| 研究生: |
陳羿帆 Yi-fan Chen |
|---|---|
| 論文名稱: |
添加鈹、鈧之LAZ1110超輕鎂合金顯微組織與機械性質研究 Microstructure and Mechanical properties of Super Light LAZ1110 magnesium alloy containing Be and Sc |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 壓延 、晶粒細化 、鎂鋰合金 |
| 外文關鍵詞: | Rolling, Refining grains, magnesium lithium alloys |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為探討新型超輕鎂合金之顯微組織與機械性質。選用具有低密度及室溫良好成形性之Mg-Li系列合金為研究對象,添加微量Be、Sc元素,形成LAZ1110、LAZ1110+Sc、LAZ1110+Be及LAZ1110+Be&Sc四種合金,但因此系列合金缺乏足夠的機械強度與加工硬化效能,故我們利用不同的製程如擠製+冷軋、擠製+固溶、擠製+固溶+時效及擠製+固溶+冷軋,一方面藉由固溶強化與冷加工強化之效果來提昇材料機械強度與加工硬化能力;另一方面配合熱機處理製程技術,嘗試獲得微細晶粒的鎂鋰合金板材,進而達到超塑性。
機械性質方面,實驗結果發現在擠製+冷軋製程中,擠製材經過90%軋延率冷軋延後其抗拉強度皆可達到200MPa左右;而另一製程經擠製+固溶+冷軋,擠製材先經350℃×1hr固溶處理後立即水淬,再經90%軋延率冷軋延,因固溶及加工強化雙重效果下致使抗拉強度提昇至240MPa上下;最後,在擠製+固溶+時效製程中,材料於室溫時效下20 ~ 40hrs間會有peak值出現,最大抗拉強度約250MPa。
顯微組織方面,實驗結果發現四種材料一致性地在擠製+固溶+冷軋製程後,施於250℃×30mins退火後便可觀察到軋延率30%與60%軋延下的金相組織呈現細小且等軸晶粒其晶粒大小均<10μm,適合超塑性拉伸實驗之試樣。
This research probes into the microstructure and mechanical properties on the new ultra light magnesium alloy. Choose the LAZ1110 magnesium alloy (Mg-11%Li-1%Al-0.5%Zn) which have low density and high formability at room temperature research object. Adding Be and Sc elements into Mg-Li alloys. Four Mg-Li alloys; a bare one (LAZ1110), the second with Sc, the third with Be and the fourth with both Sc and Be, but Mg-Li series alloys normally have low strength and poor precipitation hardening effect. Therefore we use the different processes such as extruded/cold rolled, extruded/solid solution treatment, extruded/solid solution treatment/natural aging, and extruded/solid solution treatment /cold rolled. On the one hand, in order to enhance their strengths and work hardening ability by solid solution treatment and cold work. On the other hand, in order to obtain fine grain size on Mg-Li series alloys, making use of plastic deformation such as hot extrusion, cold rolling ect plus TMT (thermo mechanical treatment) technique.
On mechanical properties, show by the experimental result, for the process of extruded/cold rolled, the ultimate tensile strength achieve about 200MPa with 90% rolling. For other process of extruded/solid solution treatment /cold rolled, the plates were solution treated at 350oC for one hour and quenched, then for rolling reduction of 90%, the ultimate tensile strength achieve about 240MPa because solid solution treatment and work hardening effect. Finally, for the process of extruded /solid solution/natural aging, and at room temperature aging, the peak value appears within 20~40 hours, the ultimate tensile strength approximately 250MPa.
On microstructure, show by the experimental result, all the four alloys uniformly found after the process of extruded/solid solution treatment /cold rolled that 30% and 60% rolling reduction then followed by 250oCx30mins annealing, a fine grain structure was obtain, the grain size of the structure is smaller than 10μm.
【1】楊榮川, ”鎂及其合金” ,機械工程手冊3-金屬材料篇, 2002年1月, pp.6-33~42.
【2】I.J. Polmear, Mater. Sci. Technol. 10(1994) 1-16.
【3】F. Czewinski, A. Zielinska-Lipiec, P.J. Oinet, J. Overbecke, Acta Mater. 49(2001) 1225-1235.
【4】K. Saitoh, Mater. Jpn. 38(1999) 321-324.
【5】張津、章宗和,“鎂合金及應用”,化學工業出版社(2006)。
【6】王建義, “超輕量鎂合金開發”, 工業材料雜誌(184期) , 91年4月, pp.132-136.
【7】M. Furukawa , Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, “Microhardness Measurement and the Hall-Petch Relationship in an Al-Mg Alloy with Submicrometer Grain Size”, Acta Mater.,44, 1996, pp.4619-4629.
【8】T. Mukai, K. Ishikawa and K. Higashi, “Influence of Strain Rate on the Mechanical Properties in Fine –Grained Aluminum Alloys”, Mater. Sci. Eng. A204, 1995, pp.12-18.
【9】T. G. Langdon, “Superplastic in Ultrafine-Grained Materials”, Key Eng. Mater. , 97-98, 1994, pp.109-124.
【10】ASM Speciality Handbook, “Magnesium and Magnesium Alloys”, ASM International, (1999)
【11】Norsk Hydro Databank, Norsk Hydro Research Center Porsgrunn, 1996.
【12】Cahn RW, Haasen P, Kramer EJ(ed). “Structure and Properties of Nonferrous Alloys (Vol118) ”, Material Science and Technology A Comprehensive TREATMENT in Matucha KH(ed), Weinheim, VCH, 1996.
【13】Jona F, Marcus P M. “Magnesium under Pressure, Structure and Phase Transition” . J Phys Condens Matter, 2003, 15, 7727.
【14】R. W. Cahn, P. Haasen and E. J. Kramer, “Structure and Properties of Nonferrous Alloys”, Materials Science and Technology, 8(1996) pp.131.
【15】莊錦川, “具備輕量化潛力的擠型鎂合金”, 鎂合金產業專欄,
2001年12月, pp.134.
【16】郭子強, “熱處理對AZ91D鎂合金顯微組織與電化學性質影響之研究”, 國立成功大學, 碩士論文, 民國93年。
【17】ASM Handbook, 10 Edition, Volume 2, 1990, pp.455.
【18】 D.S.Tawil, “Corrosion and Surface Protection Developments”,in the Proceedings of the Conference of Magnesium Technology, 1986, pp.66.
【19】戴光勇,“鎂合金表面處理技術(上) ”,材料與社會,Vol.24,1998,
pp.57.
【20】T. B. Massalski, “Binary Alloy Phase Diagrams”, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990, pp.1487.
【21】張永耀,“金屬熔銲學”,徐氏基金會,台北,1976,第134-170頁。
【22】蔡幸甫,“鎂合金產業技術及市場發展趨勢專題調查”,工研院產業經濟與資訊服務中心科技專案成果,2001。
【23】C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering A325(2002), pp.344-355.
【24】C. Shaw and H. Jones, “The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys”, Materials Science and Engineering A226-228(1997), pp. 856~860.
【25】賴耿陽,“非鐵金屬材料”,復漢出版社,新竹,1998,第174-191
頁。
【26】ASM, “Magnesium Alloys”, Metals Handbook 9th Edition, Vol. 6,
1985, pp.425-434.
【27】ASM, “Magnesium Alloys”, Metals Handbook 8th Edition, Vol. 8, 1976, pp.314-319.
【28】林欣滿, “添加鋁對鎂鋰合金特性影響之研究”, 逢甲大學, 碩士論文, 民國93年。
【29】B. Smola, I. Stul´ıkov´a, V. Oˇcen´aˇsek, J. Pelcov´a and V. Neubert, “Annealing effects in Al–Sc alloys”, Materials Science and Engineering A 462 (2007), pp.370–374.
【30】 A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec, “Grain refinement of AZ31 and ZK60 Mg alloy-towards superplasticity studies”, Materials Science and Engineering A, 302A(2001), pp.56.
【31】G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8 VCH (1996), pp.113.
【32】J. A. Chapman, D. V. Wilson: J. Inst. Metals, 91 (1962-63), pp.35.
【33】P. Crawford, R. Barrosa, J. Mendez, J. Foyos and O. S. Es-Said, Journal of Materials Processing Technology, Volume 56, Issues 1-4, January 1996, pp.108-118.
【34】F. Mitsuaki, K. Hiroki, A. Hiroshi, G.L. Terence, “Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP”, Progress in Materials Science, 55 (2007) , pp.1083-1091.
【35】林文樹、梁銘儉、劉曉嶺、翁世樂、王文樑、黃登淵、王良泉、蔡幸甫等著,“塑性加工學”,三民書局,pp.349-356。
【36】P. Gordon , Trans. AIME, 203 1043 (1955).
【37】J. C. Li, Appl. J. Phys., 33 2958 (1962).
【38】P. B. Berbon, N. K. Tsenev, R. Z. Valie, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langond, “Fabrication of bulk ultrafine-grained materials through intense plastic straining”, Metall. and Mater. Trans. A, 29A(1998), 2237.
【39】M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, “Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE”, Scripta Materialia, 36(1997), 681.
【40】Roberto B. Figueiredo, Terence G. Langdon, Mater. Sci. Eng. A, 430(2006), pp.151-156.
【41】O. Sivakesavam and Y.V.R.K. Prasad, Materials Science and Engineering A323 (2002)270-277.
【42】S. Dong, T. Imai, S.W. Lim, N. Kanetake and N. Saito, J. Materials Science (2007) 42:5296-5298
【43】Kojima Y, Inoue M, Tanno O (1990) J Japan Inst Materials 54(3):354
【44】Higashi K, Wolfenstine J (1991) Mater Letter 10:329–332
【45】M. Furui, S. D. Wu, S. X. Li, P. J. Li, “Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP”, Acta Materialia 55 (2007), pp.1083-1091.
【46】M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, T. G. Langdon, “Improving the superplastic properties of a two-phase Mg-8%Li alloy through processing by ECAP”, Materials Science and Engineering A 410-411(2005), pp.439-442.
【47】陳學翰, “Be、Sc微量元塑添加對LAZ1110合金機械性質之研究”, 東華大學, 碩士論文, 民國97年。
【48】A.Alamo and A.D.Banchik, “Precipitation Phenomean in the Mg-31 at%Li-1%Al Alloy”.
【49】Guang Sheng Song, “Some new characteristics of the strengthening phase in β-phase magnesium-lithium alloys containing and beryllium ”.
【50】Ming-Feng Li, “Effect of Alloying Elements Addition on the Mechanical and Corrosion Properties of Mg-9Li Alloys”.
【51】王長寧, “冷軋對LAZ1110合金機械性質的影響之研究”, 東華大學, 碩士論文, 民國97年。
【52】Y.W.Kim, D.H.Kim, H.I.Lee, C.P.Hong, Scripta Mater.38 (1998) pp.923-929.
【53】劉國政, “添加鈹、鈧之LAZ1110鎂鋰合金經等通道彎角擠製後之微結構及機械性質研究”, 中央大學, 碩士論文, 民國97年。