| 研究生: |
陳仁浩 Ren-hao Chen |
|---|---|
| 論文名稱: |
建築物內部走廊通風之實驗研究 Experimental Study of Corridor Ventilation |
| 指導教授: |
朱佳仁
Chia-Ren Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 風洞實驗 、示踪氣體 、風壓通風 、走廊 、自然通風 |
| 外文關鍵詞: | Wind-driven ventilation, Corridor, Wind tunnel Experiment, Tracer gas, Natural ventilation |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多公共建築物,如旅館、宿舍、醫院病房和辦公室等,通常都具有長通道型的內部走廊。這類建築設計即使房間有向外的窗戶開口,仍類似單側開口的房間,容易造成房間與走廊之間的換氣通風效果不佳,房間內很容易產生悶熱,形成不舒適的居室環境。而國內外研究建築通風之文獻,甚少針對走廊通風換氣進行深入的研究。有鑑於此,本研究藉由風洞實驗來探討室內空間與走廊之間的風壓通風。實驗結果顯示若走廊通風差,會導致房間與走廊之間的換氣率不佳。研究也探討室內裝設屏風對貫流通風的影響,結果發現屏風所產生的阻力因子會隨屏風面積(阻滯比)增加而變大,設有室內屏風的換氣率可用Chu and Wang (2010)的阻力模式加以預測。最後,實驗尚使用示踪氣體方法量測單側開口和雙側開口狀況下,不同的風速、風向及開口大小的換氣率。實驗所得之無因次換氣率與Warren (1977) 和 Kato et al. (2006) 之實驗結果相近。
Many buildings, such as hotel, dormitory, hospital rooms and office space have a long internal corridor (hall way). This kind of building design yields poor ventilation between corridor and rooms, even the room has an open window on the opposite wall. This study used wind tunnel experiments to investigate wind-driven ventilation between corridor and room. The results indicated that the ventilation rate will be reduced if the corridor is blocked. This study also explored the internal resistance of a plate inside the building and found that the resistance factor increased as the blockage ratio of the plate increased. The ventilation rate with the internal plate can be predicted by a resistance model of Chu and Wang (2010). Finally, the exchange rates of single-sided and two-sided openings under various wind speeds and directions were measured by using the tracer gas technique. The dimensionless exchange rates agreed with the results of Warren (1977) and Kato et al. (2006).
[1] P.R. Warren, Ventilation through openings on one wall only, in: C.J. Hoogendorn, N.H. Afgar (eds.), Int. Conf. Heat and Mass Transfer in Buildings, Dubrovnik, Yugoslavia. Energy Conservation in Heating, Cooling and Ventilating Buildings, Hemisphere, Washington, DC, 1 (1977) 189-209.
[2] BS 5925. Code of practice for design of buildings: ventilation principles and designing for natural ventilation. London, UK: British Standards Institution; 1980.
[3] Santamouris M. Prediction methods, in F. Allard (Ed.), Natural Ventilation in Buildings: A Design Handbook, James and James Ltd., London, England 1998. pp.64-65.
[4] M.H. Sherman, Tracer-gas techniques for measuring ventilation in a single zone, Building and Environment 25 (1990) 365-374.
[5] A. Van’t Ooster, Using natural ventilation theory and dynamic heat balance modeling for real time prediction of ventilation rates in naturally ventilated livestock houses, AgEng94 International Conference, Milano, Italy, (1994) 206-207.
[6] E. Dascalaki, M. Santamouris, A. Argiriou, C. Helmis, D.N. Asimakopoulos, K. Papadopoulos, A. Soilemes, On the combination of air velocity and flow measurements in single sided natural ventilation configurations, Energy and Buildings 24 (1996) 155-165.
[7] A.A. Peppes, M. Santamouris, D.N. Asimakopoulos, Experimental and numerical study of buoyancy-driven stairwell flow in a three storey building, Building and Environment 37 (2002) 497-506.
[8] S. Kato, R. Kono, T. Hasama, T. Takahashi, R. Ooka, A wind tunnel experimental analysis of the ventilation characteristics of a room with single-sided opening in uniform flow, Inter. Journal of Ventilation 5, 1 (2006) 171-178.
[9] N.P. Gao, J.L Niu., M. Perino, P. Heiselberg, The airborne transmission of infection between flats in high-rise residential buildings: Tracer gas simulation, Building and Environment 43 (2008) 1805–1817.
[10] T.S. Larsen, P. Heiselberg, Single-sided natural ventilation by wind pressure and temperature difference, Energy and Buildings 40 (2008) 1031-1040.
[11] S. Van Buggenhout, A. Van Brecht, S. Eren Özcan, E. Vranken, W. Van Malcot, D. Berckmans, Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces, Biosystems Engineering 104 (2009) 216-223.
[12] Z. Bu, S. Kato, T. Takahashi, K. Nakao, Wind tunnel investigation of wind-driven natural ventilation performance in residential basement with attached areaway space, The seventh Asia-Pacific Conference on Wind Engineering (2009), Taipei, Taiwan.
[13] C.R. Chu, Y.H. Chiu, Y.J. Chen, Y.W. Wang, C.P. Chou, Turbulence effects on the discharge coefficient and mean flow rate of wind-driven cross ventilation, Building and Environment 44 (2009) 2064-2072. doi:10.1016/j.buildenv.2009.02.012.
[14] C.R. Chu, Y.H. Chiu, Y.W. Wang, An experiment study of wind-driven cross ventilation in partitioned buildings, Energy and Buildings 42 (2010) 667-673. doi:10.1016/j.enbuild.2009.11.004.
[15] Y.C. Tung, Y.C. Shih, S.C. Hu, Y.L. Chang, Experimental performance investigation of ventilation schemes in a private bathroom, Building and Environment 45 (2010) 243-251.
[16] R. Becker, I. Goldberger, M. Paciuk, Improving energy performance of school buildings while ensuring indoor air quality ventilation, Building and Environment 42 (2007) 3261-3276.
[17] D. Etheridge, M. Sandberg, Building Ventilation: Theory and Measurement, John Wiley and Sons, Chichester, England, 1996.
[18] C.R. Chu, Y.W. Wang, The loss factors of building openings for wind-driven ventilation, Building and Environment 45 (2010) 2273-2279. doi:10.1016/ j.buildenv.2010.04.010.
[19] A. Jung, M. Zeller, An analysis of different tracer gas techniques to determine the air exchange efficiency in a mechanically ventilated room, Fourth International Conference on Air Distribution in Rooms – ROOMVENT, (1994) 315-332.
[20] H.J. Muller, S. Muller, The determination of emission streams from livestock buildings with different tracer gasses, Fourth International Conference on Air Distribution in Rooms – ROOMVENT, (1994) 529-542.
[21] F.J. Baptista, B.J. Bailey, J.M. Randall, J.F. Meneses, Greenhouse ventilation rate: theory and measurement with tracer gas techniques, Journal of Agricultural Engineering Research 72 (1999) 363-374.
[22] V.R. Phillips, R. Scholtens, D.S. Lee, J.A. Garland, R.W. Sneath, A review of methods for measuring emission rates of ammonia from livestock buildings and slurry or manure stores, part I: assessment of basic approaches, Journal of Agricultural Engineering Research 77, 4 (2000) 335-364.
[23] H.G.J. Snell, F. Seipelt, H.F.A. Van Den Weghe, Ventilation rates and gaseous emissions from naturally ventilated dairy houses, Biosystems Engineering 86, 1 (2003) 67-73.