| 研究生: |
鄧宜珍 Yi-Chen Teng |
|---|---|
| 論文名稱: |
遙測影像處理與地貌辨識 Remote-sensing image processing and recognition using wavelet transform and Hausdorff distance |
| 指導教授: |
曾定章
Din-Chang Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 邊線擷取 、影像比對 、影像強化 、小波轉換 、遙測影像 、影像處理 |
| 外文關鍵詞: | line-feature, wavelet transform, Hausdorff distance, remote-sensing image, image matching, image enhancement |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如何從遙測影像中擷取有用的資訊來完成地貌辨識是本論文的研究主題。因此我們的研究內容共分為三大部分:(i) 影像強化,我們利用小波轉換的多重解析度特性,分別針對不同解析度的高頻係數,以小波收縮 (wavelet shrinkage) 去除雜訊,同時以Teager能量運算 (Teager energy operator) 強化較大區塊的邊線對比。(ii) 邊線擷取,主要在於邊線追蹤 (edge tracking) 與小波轉換的結合,利用多重解析度的高頻資訊作邊線追蹤,有效解決雜訊及邊線不連續的問題。 (iii) 以線段為特徵的影像比對,將線段轉換到不同的向量空間,以Hausdorff distance作為比對的方法,解決影像的旋轉、大小變化及位移等問題,達到可靠且有效的比對結果。
In this study, approaches of image enhancement, edge extraction, and line-based image matching for remote sensing images are proposed. The image enhancement includes noise reduction and contrast enhancement. We apply wavelet shrinkage techniques to suppress noise while preserving the sharpness of large-scale edges based on a Teager energy operator.
The edge extraction contains wavelet-based edge detection and tracking. Wavelet transform provides multiresolution representation of images for robust tracking. The proposed edge detector consists of three modules: (i) starting point extraction and purgation for tracking, (ii) multiresolution gradient image generation, and (iii) multiresolution edge tracking.
The image recognition approach matches line-based features using invariant Hausdorff distance. This approach matches two images and solves the problems of rotation, scaling, and translation transformations between these two images by applying the process of minimizing Hausdorff distance twice on the two sets of feature vectors.
[1]Abbott, J. G. and F. L. Thurstone, "Acoustic speckle: Theory and experimental analysis," Ultrason. Imag., Vol.1, pp.303-324, 1979.
[2]Bahoura, M. and J. Rouat, "Wavelet speech enhancement based on the Teager energy operator," IEEE Trans. Signal Processing Letters, Vol.8, No.1, pp.10-12, Jan. 2001.
[3]Barrow, H. G., J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, "Parametric correspondence and chamfer matching: Two new techniques for image matching," in Proc. 5th Int. Joint Conf. Artificial Intelligence, Cambridge, MA, 1977, pp.659-663.
[4]Borgefors, G., "Distance transforms in digital images," IEEE Trans. Pattern Anal. Machine Intell., Vol.PAMI-8, No.6, pp.344-371, 1986.
[5]Borgefors, G., "Hierarchical chamfer matching: A parametric edge matching algorithm," IEEE Trans. Pattern Anal. Machine Intell., Vol.10, No.6, pp.849-865, Nov. 1988.
[6]Busch, C., “Wavelet based texture segmentation of multi-modal tomographic images,” Comput. & Graphics, Vol.21, No.3, pp.347-358, 1997.
[7]Canny, J. F., "A computational approach to edge detection," IEEE Trans. Pattern Anal. Machine Intell., Vol.PAMI-8, No.6, pp.334-343, 1986.
[8]Chang, S. G., B. Yu, and M. Vetterli, "Spatially adaptive wavelet thresholding with context modeling for image denoising," IEEE Trans. Image Processing, Vol.9, No.9, pp.1522-1531, Sep. 2000.
[9]Chang, S. G., B. Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression," IEEE Trans. Image Processing, Vol.9, No.9, pp.1532-1546, Sep. 2000.
[10]Chang, T. and C.-C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Processing, Vol.2, No.4, pp.429-440, 1993.
[11]Chun, S. L., P. C. Chung, and C. F. Chen, “Unsupervised texture segmentation via wavelet transform,” Pattern Recognition, Vol.30, No.5, pp.729-742, 1997.
[12]Climent, J., A. Grau, J. Aranda, and A. B. Martínez, “A high precision operator to determine edge orientation,” in Proc. Int. Conf. Control, University of Wales Swansea, UK, Sep.1-4, 1998, pp.95-99.
[13]del Val Cura, L. M., N. J. Leite, and C. B. Medeiros, "An architecture for content-based retrieval of remote sensing images," in Proc. IEEE Int. conf. Multimedia and Expo., New York, July 30-Aug.2, 2000, pp.303-306.
[14]Donoho, D. L., "De-noising by soft-thresholding," IEEE Trans. Inform. Theory, vol.41, No.3, pp.613-627, May 1995.
[15]Falcão, A. X., J. K. Udupa, and F. K. Miyazawa, “An ultra-fast user-steered image segmentation paradigm: live wire on the fly,” IEEE Trans. Medical Imaging, Vol.19, No.1, pp.55-62, 2000.
[16]Feng, L., C. Y. Suen, Y. Y. Tang, and L. H. Yang, “Edge extraction of images by reconstruction using wavelet decomposition details at different resolution levels,” Int. Journal Pattern Recognition and Artificial Intelligence, Vol.14, No.6, pp.779-793, 2000.
[17]Fukuda, S. and H. Hirosawa, "Smoothing effect of wavelet-based speckle filtering: The Haar basis case," IEEE Trans. Geosci. Remote Sensing, Vol.37, No.2, pp.1168-1172, Mar. 1999.
[18]Goodman, J. W., "Some fundamental properties of speckle," J. Opt. Soc. Amer., Vol.66, No.11, pp.1145-1150, 1976.
[19]Guo, H., J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Selesnick, and C. S. Burrus, "Wavelet based speckle reduction with application to SAR based ATD/R," in Proc. ICIP, Austin, TX, Nov.13-16, 1994, Vol.1, pp.75-79.
[20]Heijden, F., “Edge and line feature extraction based on covariance models,” IEEE Trans. Pattern Anal. Machine Intell., Vol.17, No.1, pp.16-33, 1995.
[21]Huttenlocher, D. P. and K. Kedem, "Efficiently computing the Hausdorff distance for point sets under translation," in Proc. Sixth ACM Symp. Computat. Geometry, New York, May 1990, pp.340-349.
[22]Huttenlocher, D. P., G. Klanderman, and W. Rucklidge, "Comparing images using the Hausdorff distance," IEEE Trans. Pattern Anal. Machine Intell., Vol.15, No.9, pp.850-863, Sep. 1993.
[23]Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[24]Ji, T. L., M. K. Sundareshan, and H. Roehrig, "Adaptive image contrast enhancement based on human visual properties," IEEE Trans. Medical Imaging, Vol.13, No.4, pp.573-586, 1994.
[25]Kaiser, J. F., "On a simple algorithm to calculate the energy of a signal," in Proc. ICASSP, Albuquerque, New Mexico, Apr.3-6, 1990, Vol.1, pp.381-384.
[26]Kaiser, J. F., "Some useful properties of Teager’s energy operators," in Proc. IEEE ICASSP, Minneapolis, Minnesota, Apr.27-30, 1993, Vol.3, pp.149-152.
[27]Laine, A. F., S. Schuler, J. Fan, and W. Huda, "Mammographic feature enhancement by multiscale analysis," IEEE Trans. Medical Imaging, Vol.13, No.4, pp.725-740, 1994.
[28]Mallat, S., "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Machine Intell., Vol.11, No.7, pp.674-693, July 1989.
[29]Mallat, S. and S. Zhong, "Characterization of signals from multiscale edges," IEEE Trans. Pattern Anal. Machine Intell., Vol.14, No.7, pp.710-732, July 1992.
[30]Maragos, P., A. C. Bovik, and T. F. Quatieri, "A multidimensional energy operator for image processing," in Proc. SPIE Symp. Visual Commun. Image Process., Boston, MA, Nov. 1995, pp.79-84.
[31]Morrow, W. M., R. B. Paranjape, R. M. Rangayyam, and J. E. L. Desautels, "Region-based contrast enhancement of mammograms," IEEE Trans. Medical Imaging, Vol.11, No.3, pp.392-406, 1992.
[32]Moulin, P., "A wavelet regularization method for diffuse radar-target imaging and speckle-noise reduction," J. Math. Imag. Vision, Vol.3, No.1, pp.123-134, 1993.
[33]Polesel, A., G. Ramponi, and V. J. Mathews, "Image enhancement via adaptive unsharp masking," IEEE Trans. Image Processing, Vol.9, No.3, pp.505-510, 2000.
[34]Ramponi, G., N. Strobel, and T.-H. Yu, "Nonlinear unsharp masking methods for image comntrast enhancement," Journal of Electronic Imaging, Vol.5, No.3, pp.353-366, 1996.
[35]Ruaon, M. A. and C. Tomasi, “Color edge detection with the compass operator,” in IEEE Conf. Computer Vision and Pattern Recognition, Fort Collins, Colorado, June 23-25, 1999, Vol.2, pp.160-166.
[36]Sonka, M., V. Hlavac, and R. Boyle, eds., Image Processing, Analysis, and Machine Vision, Thomson Learning, Stamford Connecticut, 1998, Ch.5.
[37]Stollnitz, E. J., T. D. DeRose, and D. H. Salesin, eds., Wavelets for Computer Graphics, Morgan Kaufmann, San Francisco, 1996.
[38]Wang, F. and R. Newkirk, "A knowledge-based system for highway network extraction," IEEE Trans. Geosci. Remote Sensing, Vol.26, No.5, pp.525-531, Sep. 1988.
[39]Yi, X. and O. I. Camps, "Line feature-based recognition using Hausdorff distance," in Proc. Int’l Symp. Computer Vision, Coral Gables, FL, Nov.21-23, 1995, pp.79-84.
[40]Yi, X. and O. I. Camps, "Line-based recognition using a multidimensional Hausdorff distance," IEEE Trans. Pattern Anal. Machine Intell., Vol.21, No.9, pp.901-916, Sep. 1999.
[41]You, J. and P. Bhattacharya, "A wavelet-based coarse-to-fine image matching scheme in parallel virtual machine environment," IEEE Trans. Image Processing, Vol.9, No.9, pp.1547-1559, Sep. 2000.
[42]Zong, X., A. F. Laine, and E. A. Geiser, "Speckle reduction and contrast enhancement of Echocardiograms via multiscale nonlinear processing," IEEE Trans. Medical Imaging, Vol.17, No.4, pp.57-586, 1998.