| 研究生: |
蔡孟勳 mon-shin Thsai |
|---|---|
| 論文名稱: |
不同含水量皂土之壓實性質 compaction quality of bentonite in different water ratio |
| 指導教授: |
田永銘
Yong-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 不同含水量皂土 |
| 外文關鍵詞: | bentonite |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高放射性廢料於地下深層處置中常利用緩衝材料阻隔放射性核種外移,目前之候選緩衝材料以膨潤土為主要對象。目前世界各國以單軸壓實技術來壓製緩衝材料塊體,因壓實過程中受壁面摩擦力之影響,使得塊體內部密度不均勻,而影響了緩衝材料塊體之品質;同時皂土內含有大量之蒙脫石,故皂土為具有高塑性、膨脹性之黏土材料。為了瞭解含水量對皂土之影響,因此本研究以直接量測法來探討不同含水量皂土於單軸壓實過程中之壓實行為。
由郭明峰(2004)提出之「長徑比外插法」與吳柏林(2005)提出之「積分平均法」,去求得不同含水量皂土之無壁面摩擦力影響之壓縮曲線,以代表不同含水量皂土之真正壓實行為。
最後本研究利用Tien等人(2004)所提出一套皂土-碎石混合物之預測模式,來預測純皂土添加不同重量比之花崗岩碎石及矽砂時之壓縮曲線。
Buffer materials are used to separate the migration of radionuclides emitted from high level wastes in a repository. Bentonite is the primary candidate for the buffer materials at present. The uniaxial compaction method is generally used to produce the bentonite blocks over the world. Since a density within the block is not even by the influence of the wall friction forces during the compaction period and then influenced the quality of buffer blocks. At the same time, a large number of montmorliionites is included into bentonite so that the clay materials of bentonite become high plasticity and expansion. Therefore, the direct method is used to find out the compaction behavior of bentonite in cases of different water content during the compaction test in the study.Compression curves of bentonite in different water contents are unable to represent real behavior of bentonite affected by the wall friction force. In the study, “Aspect ratio method” by Guo (2004) and “Integral average method” by Wu (2005) are used to obtain friction-free compression curve of bentonite in different water contents to represent real behavior of bentonite. Finally, the model by Tien et al. (2004) is used to predict compression equations of bentonite-crushed rock mixtures in this study with different granite and slica sand fractions in different weight ratios.
(1) 田永銘、吳柏林,「壓實皂土塊體之無摩擦力壓縮曲線」,材料科學與工程(2005)。
(2) 田永銘、黃偉慶、陳志霖、吳柏林,「碎石-皂土混合物之壓實行為」,2004岩盤工程研討會,淡水,第670~677頁(2004)。
(3) 田永銘、吳柏林、莊文壽、張瑟稀,「碎石-皂土混合物之壓實性質」,第十屆大地工程研討會,三峽(2003)。
(4) 田永銘、黃偉慶、吳柏林、王欣婷,「緩衝材料壓實技術與其特性初步探討」,行政院原子能委員會委託研究計畫研究報告 (2003)。(NS910898)
(5) 田永銘、黃偉慶、陳志霖、吳柏林,「皂土—碎石複合材料之應力應變行為」,2002岩盤工程研討會,新竹,第753~762頁(2002)。
(6) 伍祖璁、黃錦鐘,粉末冶金,新科技書局,台北(1996)。
(7) 邱太銘,「國外用過核燃料/高放射性廢料最終處置現況」,放射性廢料最終處置地球科學講座,放射性物料管理局(1999)。
(8) 邱太銘,「放射性廢棄物管理」,財團法人中興工程科技研究發展基金會,台北(2002)。
(9) 郭明峰,「皂土-碎石混合物之壓實性質」,碩士論文,國立中央大學土木系,中壢 (2004)。
(10) 梅錫,測量學,東華書局,台北(1994)。
(11) 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第44~54頁(2000)。
(12) 黃景川,「土壤力學」,三民書局,台北(1996)。
(13) 譚建國,「以微分模式研究複合材料之力學性質」,行政院國家科學委員會研究報告,NSC 69-0201-E006a-07 (1980)。
(14) 譚建國、王永明,「多相複合材料之微分模式I整體彈性係數」,中國工程學刊,第六卷,第二期(1983)。
(15) Aydm, I., Briscoe, B., Sanliturk, K. Y., “The internal form of compacted ceramic components : a comparison of a finite element modeling with experiment,” Powder Technology, Vol. 89, pp. 239-254 (1996).
(16) Boonsinsuk, P., Pulles, B. C., Kjartanson, B. H., and Dixon, D. A., “Prediction of compactive effort for a bentonite-sand mixture,” 44th Canadian Geotechnical Conference Volume 2, Alberta, Canada, pp. 64.1-64.12 (1991).
(17) Briscoe, B. J., Evans, P. D., “Wall friction in the compaction of agglomerated ceramic powders,” Powder Technology, Vol.65, pp.7-20 (1991).
(18) Briscoe, B. J., Rough, S. L., “The effects of wall friction in powder compaction,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 137, pp. 103-116 (1998).
(19) Briscoe, B. J., Rough, S. L., “The effects of wall friction on the ejection of pressed ceramic parts,” Powder Technology, Vol.99, pp. 228-233 (1998).
(20) Denny, P. J., “Compaction equations: a comparison of the Heckel and Kawakita equations,” Powder Technology, Vol. 127, pp. 162-172 (2002).
(21) Figliola, R. S., Beasley, D. E., Theory and Design for Mechanical Measurements, John Wiley & Sons, New York (1995).
(22) Guyoncourt, D. M. M., Tweed, J. H., Gough, A., Dawson, J., and Pater, L., “Constitutive data and friction measurements of powders using instrumented die,” Powder Metallurgy, Vol. 44, pp.25-33 (2001).
(23) Japan Nuclear Cycle Development Institute, Repository Design and Engineering Technology, JNC Supporting Report 2, Japan (1999).
(24) Johannesson, L. E., Börgesson, L., Sanden, T., Compaction of Bentonite Blocks – Development of Technique for Industrial Production of Blocks which are Manageable by Man, SKB technical report TR 95-19, Swedish (1995).
(25) Johannesson, L. E., Börgesson, L., Compaction of Bentonite Blocks – Development of Techniques for Production of Blocks with Different Shapes and Sizes, SKB technical report R 99-12, Swedish (1998).
(26) Johannesson, L. E., Compaction of Full Size Blocks of Bentonite for the KBS-3 Concept – Initial Tests for the Evaluating the Technique, SKB technical report R 99-66, Swedish (1999).
(27) Johannesson, L. E., Nord, S., Pusch, R., Sjöblom, R., Isostatic Compaction of Beaker Shaped Bentonite Blocks on the Scale 1:4, SKB technical report TR 00-14, Swedish (2000).
(28) Klemm, U., Sobek, D., Schone, B., Stockmann, J., “Friction measurements during dry compaction of silicon carbide,” Journal of the European Ceramic Society, Vol. 17, pp. 141-145 (1997).
(29) Koczak, M. J., McGraw, J. F., “A laboratory/production comparison of powder compacting and ejection response,” The International Journal of powder Metallurgy & Powder Technology, Vol. 16, No. 1, pp. 37-54 (1980).
(30) Kolaska, H., Schulz, P., Beiss, P., Ernst, E., “Investigations on die compaction,” Powder Metallurgy International, Vol. 25, No. 1, pp. 30-35 (1993).
(31) Li, Y., Liu, H., Rockabrand, A., “Wall friction and lubrication during compaction of coal logs,” Powder Technology, Vol. 87, pp 259-267 (1996).
(32) Marcial, D., Delage, P., Cui, Y. J., “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol. 39, pp. 812-820 (2002).
(33) Mclaughlin, R., “A study of the differential scheme for composite materials,” International Journal of Engineering Science. Vol. 15, pp.237-244 (1977).
(34) Mosbah, P., Bouvard, D., Ouedraogo, E., and Stutz, P., “Experimental techniques for analysis of die pressing and ejection of metal powder,” Powder Metallurgy, Vol.40, pp.269-277 (1997).
(35) Neederman, R. M., Statics and Kinematics of Granular Materials, Cambridge University Press, U. K. (1992).
(36) Norris, A. N., “A differential scheme for the effective moduli of composites,” Mechanics of Materials, Vol. 4, pp. 1-16 (1985).
(37) Ramberger, R., and Burger, A., “On the application of the Heckel and Kawakita equations to Powder Compaction,” Powder Techonlogy, Vol. 43, pp. 1-9 (1985).
(38) Tien, Y. M., Wu, P. L., Chu, C. A., “Thermal Conductivity and Compaction Characteristics of Bentonite-Base Buffer Materials,” 2005 Taiwan Atomic Energy Fourm (TAEF), Longtan, Taiwan (2005a).
(39) Tien, Y. M., Wu, P. L., Kuo, M. F., and C. A. Chu, “Wall Friction Measurement and Compaction Characteristics of Bentonite Powders,” submitted to Powder Technology (2005b).
(40) Tien, Y. M., Wu, P. L., Kuo, M. F., “Compaction Properties of Crushed Rock - Bentonite Mixture,” submitted to Chinese Journal of Geotechnical Engineering (2005c).
(41) Tien, Y. M., Wu, P. L., Chuang, W. S., and Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Applied Clay Science, Vol. 26, pp. 489-498 (2004a).
(42) Tien, Y. M., Wu, P. L., Chuang, W. S., and Wu, L. H., “The Friction-Free Compressibility Curve of Bentonite Block,” 2nd International Meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Tours, France (2004b).
(43) Tien, Y. M., Wu, P. L., and Kuo, M. F., “The measuring method for wall friction during bentonite block compaction and ejection,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, ROC, pp. 187-194 (2004c).
(44) Tien, Y. M., Wu, P. L., Chuang, W. S., Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Reims, France (2002).
(45) Yong, R. N., Boonsinsuk, P., Wong, G., “Formulation of backfill material for nuclear fuel waste disposal valut,” Canadian Geotechnical Journal, Vol.23, pp. 216-228 (1986).