| 研究生: |
王志添 Chih-Tien Wang |
|---|---|
| 論文名稱: |
多組態星載干涉雷達於地變形觀測研究 Surface Deformation Mapping by Multi-Modal Spaceborne Radar Interferometry |
| 指導教授: |
陳錕山
Kun-Shan Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 地變形 、干涉雷達 |
| 外文關鍵詞: | deformation, synthetic aperture radar interferometry |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去單一觀測角干涉雷達應用受限於單一斜距向位移觀測,隨著 ENVISAT、ALOS/PALSAR與RADARSAT-2等星載雷達發射運作,多觀測角度或多偏極組態方式拍攝,增加地變形觀測機會。地變形觀測重要性在於伴隨產生災害的威脅,常見的兩種地表地變形形態,其一瞬間大規模地變形(如集集地震或汶川地震等)造成重大災害,其二微量地變形(如台灣西部地區地層下陷或台南台地抬昇),也間接威脅著台灣高速鐵路運行。
本研究提出以多組態星載干涉雷達方法,藉由不同時段、不同觀測角度或不同偏極觀測組態干涉雷達所觀測斜距變量,以成本(Cost)函數描述其間三維地變形量與各觀測斜距變量幾何關係,以最小成本方法解算出下陷量場;加以長期多次觀測變量,另藉由地變形模式設計,同理以成本函數描述各時間地變形量,以最小成本方法解算下陷中心地變形量隨時間變化。
本研究以歐洲ENVISAT的C波段ASAR與日本ALOS上的L波段PALSAR星載雷達干涉雷達對於彰化雲林地區下陷情形自2006年12月至2009年元月進行觀測,其中包含昇、降模式差分干涉觀測,以最小成本函數方法解決過去單一斜距變量觀測,對西部沿海地區地層下陷作反演分析,以推估西部沿海地區地層下陷範圍及趨勢;與傳統水準測量比較具一致性,在沿台灣高鐵附近呈現兩下圓狀陷區域。另藉由地變形模式設計成本函數描述各時段地變形量,以最小成本方法解算集集地震前員林下陷中心與台南台地抬昇中心地變形量隨時間變化。本方法有助應用於未來星載雷達多觀測角度或多偏極觀測組態運作方式下,兼顧地變形觀測應用。
The new generation spaceborne SAR are more complicated within radar interferometry application due to more flexible operation as multi-beam and multi-polarization like as ENVISAT、ALOS/PALSAR、Radarsat-2 and TerraSAR-X etc. The prevailing complex geological condition of Taiwan have drawn considerable attention from various geological communities to produce various natural hazards at different scales. Located in the tropical/subtropical zone of the Pacific Rim, its ecological and rugged mountainous properties are environmentally sensitive making monitoring and observations especially difficult because of the high population density.
The main limitation of 3D deformation measurements made with interferometry is that interferogram gives only give the line-of-sight direction is measured. In this study proposes a new approach using the cost function to integrate of multi-modal spaceborne radar interferograms within multi-beam or both ascending and descending. Minimized the cost function and extracted the subsidence deformation map. In the meantime, we considered the deformation type and proposed the temporal deformation models with minimized cost function for long-term interferometric observation. The study case used the period of observations dated from Dec. 2006 to Jan. 2009 with pairs from C-band ASAR/ENVISAT and L-band PALSAR/ALOS data sets were used to detect and track the deformations. With both ascending and descending orbits, the manner further improved the subsidence mapping. That result is better comparisons with the precision leveling survey in 2005. Both ascending and descending mapping results indicate that the maximum subsidence rates were about 7 cm/yr (around epicenter) in that period. Another topic within deformation model within the long-term observation to find the temporal deformation profile such as Yuanlin subsidence event before ChiChi earthquake and Tainan tableland uplift.
[1]Barrier, E., and J. Angelier, 1986: Active collision in eastern Taiwan: the Coastal Range. Tectonophys., 125, 39-72.
[2]Beaudoin, A.; Le Toan, T.; Gwyn, Q. H. J.,"SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture", IEEE Transactions on Geoscience and Remote Sensing, vol. 28, issue 5, pp. 886-895,1990.
[3]Biq, C., 1972 “Dual trench structure in the Taiwan-Luzon region”,. Proc. Geol. Soc. China, 15: 65-75.
[4]Biq, C., 1973: Kinematic pattern of Taiwan as an example of actual continent-arc collision. Report of the Seminar on Seismology. US-ROC Coop. Sci. Prog., 25, 149-166.
[5]Blom, R. and C. Elachi, “Spaceborne and airborne imaging radar observations of sand dunes”, J. Geophys. Res. 86, pp. 3061–3073, 1981.
[6]Bowin, C., R. S. Lu, C. S. Lee, and H. Schouten, 1978: Plate convergence and accretion in Taiwan-Luzon region. Am. Assoc. Petr. Geol. Bull., 62, 1643-1672.
[7]Campbell, D.B.; R.F. Jurgens, R.B. Dyce, F.S. Harris and G.H. Pettengill,”Radar Interferometric Observations of Venus at 70 cm”, Science 170 (1970), p. 1092, 1970.
[8]Chang, H. C., C. W. Lin, M. M. Chan, and S. T. Lu, "An Introduction to the Active Faults of Taiwan: Explanatory Text of the Active Fault", Published by Central Geological Survey, p 103,1998
[9]Chang, C. C., “Estimation of local subsidence using GPS and leveling combined data”., Surveying and land Information Systems 60(2): 85-94, 2000.
[10]Chang, C. P.; C. T. Wang, T. Y. Chang, K. S. Chen, Liang, L. S. Liang, E. Pathier, "Application of SAR interferometry to a large thrust deformation: the 1999 Mw= 7.6 Chichi earthquake in central Taiwan", Geophysical Journal International, Volume 159, Issue 50, pp. 9-16, 2004.
[11]Chang, C. P., T. Y. Chang, J. Angelier, H. Kao, J. C. Lee, and S. B. Yu, 2003: Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observations and tectonic data. Earth Planet. Sci. Lett., 214, 115-127.
[12]Chang, C. P., C. T. Wang, H. C. Wang and K.-S. Chen, ”Application of D-inSAR in monitoring the metrpoltian land-surface deformation: Jhongli Industrial Park as an example”, J. Photogram. Remote Sens., vol. 9, no. 3, pp. 9-14, 2004.
[13]Curlander, J. C. and R. N. McDonough, “Synthetic Aperture Radar Systems and Signal Processing”, New York: Wiley-Interscience, 1991. Proc. IEEE (Special Section on Spaceborne Radars for Earth and Planetary Observations), vol. 79, no. 6, pp. 773–880, 1991.
[14]Dadson, S. J.; N. Hovius, H. Chen, W. B. Dade, M.-L. Hsieh, S. D. Willett, J. C. Hu, M. J. Horng, M. C. Chen, C. P. Stark, D. Lague, J. C. Lin, “Links between erosion, runoff variability and seismicity in the Taiwan orogen”, Nature, vol. 426, pp 648-651, 2003.
[15]Dixon, T. H., "An introduction to the Global Positioning System and some geological applications", Reviews of Geophysics 29 (2), 249-276, 1991.
[16]Dixon, T. H., “SAR interferometry and surface change detection. Report of a workshop on the scientific applications and technical challenges of a new technique for remotely monitoring the Earth''s surface from space”, Boulder, Colorado. February 3-4, 1994.
[17]Elachi, C. et al.,"Shuttle Imaging Radar Experiment", Science, vol. 218. no. 4576, pp. 996-1003, 1982.
[18]Elachi, C., J. Cimino, and M. Settle, "Overview of the Shuttle Imaging Radar-B Preliminary Scientific Results", Science, vol 232, no 4757, pp. 1511-1516, 1986.
[19]Fitch, J. K., ”Synthetic perture radar”, Springer-Verlag, Berlin, Germany, 1988.
[20]Gabriel, A. K.; R. M. Goldstein and H. A. Zebker, ”Mapping small elevation changes over large areas: Differential radar interferometry”, J. Geophy. Res., vol. 94, no. B7, pp. 83-91, 1989.
[21]Gens, R. and J. L. Vangenderen, “SAR interferometry—Issues, techniques, applications,” Intl. J. Remote Sensing, vol. 17, no. 10, pp. 1803–1835, 1996.
[22]Graham, L. C., "Synthetic Interferometer Radar for Topographic Mapping", Proceedings of the IEEE, 62(6), 763–768. 1974.
[23]Griffiths, H. D., “Interferometric synthetic aperture radar”, Electronics Communication Engineering Journal, v. 7, no., 6, p. 247-256. 1995,
[24]Hagberg, J. O., L. M. H. Ulander and J. Askne, "Repeat-Pass SAR Interferometry over Forested Terrain", IEEE Transactions on Geoscience and Remote Sensing, 33, pp 331-240, 1995.
[25]Hager, B. H., King, R.W. and Murray, M.H., "Measurement of crustal deformation using the Global Positioning System", Annu. Rev. Earth Planet. Sci., 19, 351-382, 1992.
[26]Herring, T. A.,"Submillimeter Horizontal Position Determination Using Very Long Baseline Interferometry. J. Geophys. Res. 97, p. 1981–1990, 1992.
[27]Huang, M. H.; J. C. Hu, C.-S. Hsieh, K. E. Ching, R-J. Rau, E. Pathier, “A growing structure near the deformation front in SW Taiwan deduced from SAR interferometry and geodetic observation”, Geophys, Res. Lett., vol. 33, L12305, doi:10.1029/2005GL025613, 2006.
[28]Hu, J. C., S. B. Yu, H. T. Chu, and J. Angelier, “Transition tectonics of northern Taiwan induced by convergence and trench retreat”, in T. B. Byrne and C.-S. Liu, eds., Geology and Geophysics of an Arc-Continent collision, Taiwan. Geol. Soc. Am. Special Papers, vol. 358, pp. 149-162, 2002.
[29]Industrial development Bureau, “2007 Industrial Development In Taiwan, R.O.C.”, Ministry of Economic Affairs, http://www.moeaidb.gov.tw/portal.html, 2007
[30]Kovaly, J. J.,"Radar Techiniques for Planetary Mapping with an Orbiting Vehicle", Synthetic Aperture Radar, J. J. Kovaly (ed.), Dedham, Artech House, pp. 32-54, 1976.
[31]Lin, Y. S., Y. G. Chen, Z. S. Chen, and M. L. Hsieh, “Soil morphological variations on the Taoyuan Terrace, Northwestern Taiwan: Roles of topography and groundwater”, Geomorphology, vol. 69, pp. 138-151, 2005.
[32]Lin, Y. S., Y. W. Lin, Y. Wang, Y. G. Chen, M. L. Hsu, S. H. Chiang and Z. S. Chen, “Relationships between topographic and spatial variation in groundwater and soil morphology within the Taoyuan-Hukou Tableland, northern Taiwan”, Geomorphology, vol. 90, pp. 36-54, 2007.
[33]Liu, C. H., Y. W. Pan, J. J. Liao, C. T. Huang, and S. Ouyang, “Characterization of land subsidence in the Choshui Reiver alluvial fan”, Taiwan. Environmental Geology ,45: 1154-66, 2004.
[34]Massonnet, D.; M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, “The displacement field of the Landers earthquake mapped by radar interferometry”, Nature, vol. 364, no. 6433, pp. 138-142, 1993.
[35]Massonnet, D., Feigl, K., Rossi, M. and Adragna, F., “Radar interferometric mapping of deformation in the year after the Landers earthquake”, Nature, 1994. 369: p. 227–230, 1994.
[36]Massonnet, D., K. L. Feil, “Radar interferometry and its application to changes in the Earth’s surface”, Rev. Geophys., vol. 36, pp 441-500, 1998.
[37]Pathier, E., Fruneau, B., Deffontaines, B., Angelier, J., Chang, C. P., Yu, S. B., Lee, C. T., “Coseismic displacements of the footwall of Chelungpu fault by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data”, Earth and Planetary Science Letters, 212, pp 73-88, 2003.
[38]Posner, F. L., "Texture and speckle in high resolution synthetic aperture radar clutter ", IEEE Trans. Geosci. Remote Sensing, vol. 31, no. 1, pp. 192-203, 1993
[39]Prati, C., F. Rocca, A. Guarnieri, and E. Damonti, “Seismic migration for SAR focusing: Interferometric applications,” IEEE Trans. Geosci. Remote Sensing, vol. 28, pp. 627–640, 1990.
[40]Raney, R. K., Runge, H. Bamler, R. Cumming, I., and Wong, F. H., "Precision SAR Processing Using Chirp Scaling", IEEE Trans. Geosci. Remote Sensing, vol. 32, no. 4, 1994.
[41]Rignot, E.,"Tidal motion, ice velocity, and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry", Journal of Glaciology, 42(142), pp. 476-485, 1996.
[42]Segall, P. and J. L. Davis, ”GPS applications for geodynamics and earthquake studies”, Annu. Rev. Earth Planet. Sci. vol. 25 pp. 301-336, 1997.
[43]Solaas, G., F. Gatelli, G. Campbell, “Initial Testing of ERS tandem data quality for InSAR applications”, ESA RS/ED 96.D002/1.0, Frascati, 1996.
[44]Stacy, N. J. S., D. B. Campbell, P. G. Ford, "Arecibo Radar Mapping of the Lunar Poles: A Search for Ice Deposits", Science 276, 1527-1530, 1997
[45]Sun, S. C.,"Photogeologic study of the Tainan-Kaohsiung coastal plain area, Taiwan", Petrol. Geol. Taiwan, 3, 39-51, 1964.
[46]Wolf, M., and D. Wingham, “The status of the world''s public-domain digital topography of land and ice”, Geophys. Res. Lett., 19, 2325-2328, 1992.
[47]Wu, C, K. Y. Liu, M. Jin,"Modeling and a correlation algorithm for spaceborne SAR signals ", IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-18, pp. 563-575, 1982.
[48]Yu, S. B., H. Y. Chen, and L. C. Kuo, “Velocity field of GPS stations in the Taiwan area”, Tectonophysics, vol. 274, no. 1-3, pp. 41-59, 1997.
[49]Yu, S. B., L. C. Kuo, R. S. Punongbayan, and E. G. Ramos, “GPS observation of crustal deformation in the Taiwan-Luzon region”, Geophy. Res. Lett., vol. 26, no. 7, pp. 923-926, 1999.
[50]Zebker, H. A. and R. M. Goldstein, ”Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res. vol. 91, no. B5, pp. 4993-4999, 1986.
[51]Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, C. L. Werner, ”On the derivation of co-seismic displacement fields using differential radar interferomtry: the Landers earthquake”, J. Geophys., Res. 99, 1994, pp 19617-19634, 1994.
[52]Zisk, S. H., “A new Earth-based radar technique for the measurement of lunar topography,” Moon, vol. 4, pp. 296–300, 1972.