跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林詠祥
Yong-Xiang Lin
論文名稱: 金屬矽化物薄膜與矽/矽鍺界面反應
The study of silicide on Si/Si1-XGeX interface
指導教授: 李佩雯
Pei-Wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 65
中文關鍵詞: 金屬矽化物鈦矽化合物鎳矽化合物
外文關鍵詞: silicide, TiSi2, NiSi
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的研究重點,在於如何製造出低阻值、表面平整的金屬矽化物,以便將來應用到金氧半電晶體元件的製作。
    首先,我們簡介了一般形成金屬矽化物常用的金屬材料,其優缺點的敘述,這些金屬有鈦、鈷、鎳;而我們先將金屬鈦應用到在我們實際製作金氧半電晶體元件時,會遇到的矽基板條件,這包括P型與N型的矽基板,因此我們一開始的實驗,便是針對金屬鈦與未摻雜、P型與N型的矽基板,形成的鈦矽化合物在不同的快速熱回火溫度時的阻值分析、表面分析及鈦矽化合物薄膜的組成元素分析;接著便將此實驗流程應用到鎳矽化合物的製作,我們同樣比較了在矽基板但不同的摻雜情形時,在不同的快速熱回火溫度的阻值分析、表面分析;最後再將鎳矽化合物的製程應用到P型與N型的矽鍺基板,一樣是比較其阻值與表面的分析。


    In this thesis, the focus is how to fabricate silicide with low resistance and smooth interface. The experimental results promise the potential of MOSFET application.
    First, we describe the common silicide about advantages and faults. In Ti-silicide, we use undoped、P-type and N-type Si-substrates. We analyze Ti-silicide resistance、interface and the element of composing in different RTA(raped thermal annealing) temperature and time. In Ni-silicide, we not only use undoped、P-type and N-type Si-substrates but also P-type and N-type SiGe-substrates. We analyze Ni-silicide resistance and interface in different RTA temperature and time in the same way.

    目錄 第一章 簡介…………………………………………………1 1-1 金屬矽化物的實際應用…………………………1 1-2 常用的材質………………………………………4 1.3 矽鍺/矽異質結構簡介…………………………8 1.4 研究動機…………………………………………9 第二章 實驗步驟…………………………………………19 第三章 鈦矽化合物之實驗結果……………………………24 3.1 鈦矽化合物之阻值分析…………………………24 3.2 鈦矽化合物之表面分析…………………………26 3.3 鈦矽化合物之元素分析…………………………26 第四章 鎳矽化合物之實驗結果……………………………40 4.1 鎳矽化合物之阻值分析…………………………40 4.2 鎳矽化合物之表面分析…………………………42 第五章 結論與未來展望……………………………………59 參考文獻………………………………………………………61

    參考文獻
    [1] T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, H. Iwai, “Self- aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,” IEEE Transactions on Electron Devices, vol. 42, pp. 915, 1995.
    [2] K. C. Sawaswat and F. Mohammadi, “Effect of Scaling of Interconnections on the Time Delay of VLSI Circuits,” IEEE Trans. Electron Devices, vol. 29, no. 4, pp. 645, 1982.
    [3] D. B. Scott, W. R. Hunter and H. Shichijo, “A Transmission Line Model for Silicided Diffusions: Impact on the Performance of VLSI Circuits,” IEEE Trans. Electron Devices, vol. 29, no. 4, pp. 651, 1982.
    [4] A. Levitas, "Electrical properties of germanium-silicon alloys," Phys. Rev., vol. 99, pp. 1810, 1955.
    [5] M. Glicksman, "Mobility of electrons in germanium-silicon alloys," Phys. Rev, III, pp. 125, 1958.
    [6] J. A. Moriarty and S. Krishnamurthy, "Theory of silicon superlattices : Electronic structure and enhanced mobility," J. Appl. Phys. vol. 54, pp. 1892 ,1983.
    [7] G. C. Osboum, "Strained-layer superlattices: A brief review," IEEE J. Quantum Electron. QE-22, pp. 1677, 1986.
    [8] T.Paul Chow,Andrew J. Steckl,IEEE Transacions on Electron Devices ED-30(1983)p1480
    [9] Hiroshi Iwai, “NiSi silicide technology for scaled CMOS” Microelectronic Engineering 60 (2002) 157.
    [10] J. C. Barbour, A. E. M. J. Fischer and J. F. van deer Veen, “The thin- film reaction between Ti and thermally grown SiO2,” J. Appl. Phys., vol. 62, pp.2582, 1987.
    [11] Jerome B. Lasky, James S. Nakos, Orison J. Cain, and P. J. Geiss, “ Comparison of Transformation to Low- Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron Devices, vol. 38, pp. 262, 1991.
    [12] N. S. Parekh, H. Roede, A. A. Bos, A. G. M. Jonkers, and R. D. J.   Verhar, “Characterization and implementation of self-aligned TiSi2 in submicrometer CMOS technology,” IEEE Trans. Electron Devices, vol. 38, pp. 88, 1991.
    [13] 國家奈米元件實驗室期刊第五卷第三期
    [14] T. Ohguro et al., IEEE Tran. Electron Devices, ED-41, p.2305, 1994.
    [15] G. T. Sarcona, M. Stewart, M.K. Hatalis, “Polysilicon thin-film
    transistors using self-aligned cobalt and nickel silicide source and drain contacts,” IEEE Electron Device Letters, vol. 20, Issue: 7, pp. 332, 1999.
    [16] W.T. Sun, M.C. Liaw, “Suppression of cobalt silicide agglomeration using nitrogen(N2+) implantation,” IEEE Electron Device Letters, vol. 19, pp. 163, 1998.
    [17] T. Ohguro et al., Symp. VLSI Technol., p.101 (1997).
    [18] S. Ogawa, T. Kousaki, T.Youshida and R. Sinclair, J. Appl. Phys.,70(1991) p827
    [19] T. Ohguro et al., Proc. SSDM, p.192 (1993).
    [20] T. Ohguro, S. Nakamura, E. Morifuji, M. Ono, T. Yoshitomi, M. Saito, H. S. Momose, Iwai, H. ,“Nitrogen-doped nickel mono-silicide technique for deep submicron CMOS salicide,” in IEDM Tech, Dig., pp. 453 ,1995.
    [21] K.-I. Goto, J. Watanabe, T. Sukegawa, A. Fushida, T. Sakuma, T. Sugii, T, “A comparative study of leakage mechanism of Co and Ni salicide processes,” Reliability Physics Symposium Proceedings, pp.363, 1998.
    [22] R. People, "Indirect band gap of coherently strained GexSil-x bulk alloys on <001> silicon substrates," Phys. Rev., vol. B32, pp. 1405, 1985.
    [23] C. G. Van de Walle and R. M. Martin, "Theoretical calculations of heterojunction discontinuities in the Si/Ge system," Phys. Rev., vol. B34, pp. 5621, 1986.
    [24] R. People and J. C. Bean, "Band alignments of coherently strained GexSil-x /Si heterostructures on <001> GeySi1-y substrates," Appl. Phys. Lett., vol. 48, pp. 538, 1986.
    [25] M. Fukumoto et al. “Titanium silicide interconnect technology for submicrometer DRAM,” IEEE Trans. Electron Devices, vol. 35, pp. 2328, 1988.
    [26] T. P. Chow, W. Katz, and G. Smith, “Titanium silicide formation on BF2+-implanted silicon,” Appl. Phys. Lett., vol. 46, pp. 41, 1985.
    [27] P. Revesz et al., “Growth of titanium silicide on ion-implanted silicon,” J. Appl. Phys, vol. 54, pp. 1860, 1983.
    [28] D. B. Aldrich et al., “Stability of C54 titanium germanosilicide on silicon-germanium alloy substrate,” J. Appl. Phys, vol. 77, pp. 5107, 1995.
    [29] T. Morimoto, “A NiSi silicide technology for advanced logic devices” IEDM (1991) 653.
    [30] T. Jarmar, “Morphological and phase stability of nickel-germanosilicide on Si1-xGex under thermal stress” Jnl. Appl. Phy. VOL. 92. NO. 12 (2002) 7193.

    QR CODE
    :::