| 研究生: |
張宏禾 Hung-Ho Chang |
|---|---|
| 論文名稱: |
觸媒對多孔性介質爐之預混燃燒現象之影響 Effects of catalysis on premixed combustion in a porous media burner |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 觸媒 、甲烷 、燃燒 、多孔性介質 |
| 外文關鍵詞: | methane, catalysis, combustion, porous media |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用實驗方法來研究甲烷,氫氣和空氣預混燃氣在多孔性陶瓷介質燃燒爐中的燃燒現象,另外在多孔性介質表面塗上不同的催化劑,此催化劑成分分別是氧化鑭和氧化鎂。實驗中將甲烷與空氣預先做均勻的混合,再送入燃燒爐中燃燒,等火焰穩定之後再通入所需要的氫氣流量。實驗中使用LabView 程式控制空氣及甲烷之流量、監測爐內溫度分布,並計算當量比及平均流速。
燃燒爐的內徑是2.54公分、外徑10公分且高度20公分,裡面放了七塊多孔性介質,表面塗有催化劑的多孔性介質擺在燃燒爐的中間位置,實驗中討論爐體結構、當量比、流速、氫氣莫爾分率的改變對火焰造成的影響,並探討一氧化碳、氮氧化物和總碳氫濃度對以上各參數之影響。
實驗測試的當量比條件為0.5、0.55、0.6和0.7,而氫氣在燃料中的比例為0、0.3和0.6。結果顯示在多孔性陶瓷介質燃燒爐中放置塗有催化劑的陶瓷塊有助於火焰燃燒溫度的提昇,增加燃燒效率。實驗結果也發現多孔性陶瓷介質燃燒爐燃燒時所產生的CO和 的排放量相當低。添加氫氣會影響到火焰的位置,但可增加火焰速度或是造成燃燒速率過於快速。
The combustion characteristics of premixed hydrogen- methane-air mixture in a porous media burner with catalysts are studied experimentally. La2O3 and MgO are used as the catalysts in this work. They are supported on highly porous SiC and Al2O3 forms. Flow rates are controlled by mass flow meters. Gas temperature within the burner and CO, NOX, THC emissions are monitored throughout the experiments.
Results show that the flame temperature is increased by adding catalysts due to the increased reaction rate. Flame positions are different for different material burners. For Al2O3 porous burners, flame is usually stabilized in the middle of the burner. But for SiC burners, flame is stabilized at near the inlet due to higher thermal conductivity of SiC. In addition, the stable region is wider for SiC burner and the flame temperature is higher due to better preheating effects.
Addition of hydrogen in the methane-air mixture does not change the flame temperature very much. Although hydrogen does promote chemical reaction, but it also has higher thermal conductivity and cooling by convection is enhanced due to increase flame speed.
For burners without catalysts, CO emission increases with the equivalence ratio and flame speed slightly because of shorter residence time. But the concentrations are all less than 15ppm. For burners with catalysts, the CO emissions are all reduced to below 5ppm. The catalysts do promote CO to CO2 conversion. On the other hands, NOX emissions are all in the range of 10-15 ppm.
參考文獻
[ 1] Weinberg, F. J., “Combustion Temperature: The Future?” Nature, Vol. 233, pp. 239-241, 1971.
[ 2] Lloyd, S. A., and Weinberg, F. J., “A Burner for Mixtures of Very Low Heat Content,” Nature, Vol. 251, pp. 47-49, 1974.
[ 3] Lloyd, S. A., and Weinberg, F. J., “Limits to Energy Release and Utilisation from Chemical Fuels,” Nature, Vol. 257, pp. 367-370, 1975.
[ 4] Hardesty, D. R., and Weinberg, F. J., “Burners Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 8, pp. 201-214, 1974.
[ 5] Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
[ 6] Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
[ 7] Kotani, Y., and Takeno, T., “An Experimental Study on Stability and Combustion Characteristics of an Excess Enthalpy Flame,” Nineteenth Symposium (International) on Combustion/The Combustion Institute, pp. 1503-1509, 1982.
[ 8] Echigo, R., Yoshizawa, Y. Hamamura, K., and Tomimura, T., “Analytical and Experimental Studies on Radiative Propagation in Porous Media With Internal Heat Generation,” Proceedings of the 8th International Heat Transfer Conference, San Francisco, CA, Vol. II, pp. 827-832, 1986.
[ 9] Yoshizawa, Y., Sasaki, K., and Echigo, R.,”Analytical Study of the Structure of Radiation Controlled Flame,” International Journal of Heat and Mass Transfer, Vol. 31, No. 2, pp. 311-319, 1988.
[10] Sathe, S. B., Peck, R. E., and Tong, T.-W., “Flame Stabilization and Multimode Heat Transfer in Inert Porous Media: A Numerical Study,” Combustion Science and Technology, Vol. 70, pp. 93-109, 1990.
[11] Sathe, S. B., Peck, R. E., and Tong, T.-W., “A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners,” International Journal of Heat and Mass Transfer, Vol. 33, No. 6, pp. 1331-1338, 1990.
[12] Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” ASME/JSME Thermal Engineering Proceedings, Vol. 4, pp. 225-231, 1991.
[13] Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” Transactions of the ASME, Vol. 115, pp. 744-750, 1993.
[14] Hsu, P.-F., Matthews, R. D., “The necessity of using detailed kinetics in models for premixed combustion within porous media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993.
[15] Hsu, P.-F., “Experimental Study of the Premixed Combustion within the Nonhomogenous Porous Ceramic Media,” HTD-Vol. 328, National Heat Tranfer Conference, Vol. 6, ASME 1996.
[16] C. L. Hackert, J. L. Ellzey, and O. A. Ezekoye, “Combustion and Heat Transfer in Model Two-Dimensional Porous Burners,” Combustion and Flame, Vol. 116, pp. 177-191, 1999.
[17] Marc, D. R., Richard, D. H., Robert, W. D., “Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability,” Catalysis Today Vol. 47, pp. 253-262, 1999.
[18] G. Brener, K. Pickenacker, O. Pickenacjer, D. Trmis,k. Wawrzinek, and t. Weber, “Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media,” Combustion and Flame, Vol. 123, pp. 201-213, 2000.
[19] Tseng, C.-J., and Li, C.-H., “Thermally-Enhanced Combustion in a Porous Medium Burner,” Journal of the Chinese Society of Mechanical Engineers, Vol. 22, No. 3, pp. 217-224, 2001.
[20] 曾重仁 蔡桓宇, “多孔性介質爐中熱增強燃燒現象之數值模擬,” 力學 第十七卷 第一期 51-61頁,民國90年六月。
[21] Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.
[22] Tseng, C.-J., and Howell, J. R., “Liquid Fuel Combustion within Porous Inert Media,” Heat Transfer with Combined Modes, ASME-HTD, Vol. 299, pp. 63-69, 1994.
[23] Tseng, C.-J., and Howell, J. R., “Combustion of Liquid Fuels in a Porous Radiant Burner,” Combustion Science and Technology, Vol. 112, pp. 141-161, 1996.
[24] Kaplan, M., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” M.S. Thesis, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
[25] Kaplan, M., and Hall, M. J., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.
[26] Uykur, C., Henshaw, P. F., Ting, D. S.-K. and Barron, R. M., “Effects of addition of electrolysis production on methane / air premixed laminar combustion,” International Journal of Hydrogen Energy, Vol. 26, pp. 265-273, 2001.
[27] Tseng, C.-J., “Effects of hydrogen addition on methane combustion in a porous medium burner,” International Journal of Hydrogen Energy, Vol. 27, pp. 699-707, 2002.
[28] Guido, S., Isotta, C., Vito, S., and Romano, A., “ Catalytic pre-mixed fibre burners,” Chemical Engineering Science, Vol. 54, pp. 3599-3608, 2002.
[29] Eli, R., and Yun., H., H., “Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts,” Applied Catalysis A, Vol. 133, pp. 149-161, 1995.
[30] Prabhu, A., K., Radhakrishnan, R., and Ted Oyama, S., “Supported nickel catalysts for carbon dioxide reforming of methane in plug flow and membrane reactors,” Applied Catalysis A, Vol. 183, pp. 241-252, 1999.
[31] U.S. Energy Information Administration, http://www.eia.doe.gov/
[32] National Instruments Corporation, PCI E series User Manual, Ch. 4, 1999.
[33] National Instruments Corporation, AT E Series User Manual, Ch. 4, 1997.
[34] J.U.M. Engineering, User Manual FID Model 3-300MC, 2001.
[35] Sierra Instruments Corporation, Sierra Series 830/840/860 side-trak and auto- trak mass flow meter and controllers, 1996.
[36] Advantech Corporation, Pcl-726 Six Channel D/A Output Card User Maunal, 1994.
[37] 鼎嚮科研股份有限公司, 數位式氣體質量流量控制器 MC-2000 Series and MC2000E Series使用說明書。
[38] Pickena¨cker, O., Pickena¨cker, K., Wawrzinek, K., Trimis, D., Pritzkow, W. E. C., Mu¨ller, C., Goedtke, P.,Papenburg, U., Adler, J., Standke, G., Heymer, H., Tauscher, W., and Jansen, F., “Practice & Management: innovative ceramic material for porous-medium burners, I” Interceram, Vol. 48, pp. 326–330, 1999.
[39] Pickena¨cker, O., Pickena¨cker, K., Wawrzinek, K., Trimis,D., Pritzkow, W. E. C., Mu¨ller, C., Goedtke, P., Papenburg, U., Adler, J., Standke, G., Heymer, H., Tauscher, W., and Jansen, F., “Drying & Firing: innovative ceramic materials for porous-medium burners, II” Interceram, Vol. 48, pp. 424–434, 1999.
[40] Adam Bielanski, and Jerzy Haber, Oxygen in Catalysis, pp. 201, Marcel Dekker, New York, 1991.
[41] G., C., Bond, Heterogeneous Catalysis: Principles and Application, 2nd Ed., pp. 46, Oxford, New York, 1993.
[42] S., R., Turns, An Introduction to Combustion: Conceptions and Applications, 2nd Ed., Ch. 5 and Ch. 15, Mcgraw-Hill, Singapore, 2000.
[43] S., C., Saxena, W., Y., Wu, and M., B., Fei., “Fluidized-bed combustion of coal,” Energy, Vol. 22, pp. 1029-1040, 1997.