跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卓伯全
Bo-Chao CHo
論文名稱: 連續流循序批分式活性污泥系統
Development of a Real-time Aeration Control Strategy for Low DO LevelBiological Nutrient Removal (BNR) Process Control of a Continuous-Flow Sequencing Batch Reactor
指導教授: 廖述良
Shu-Liang Liaw
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 180
中文關鍵詞: 溶氧生物攝磷需氧速率溶氧轉換比率
外文關鍵詞: oxygen utilization behaviors, CFSBR
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為提昇連續流循序批分式活性污泥系統( Continuous-Flow SequencingBatch Reactor, CFSBR)的整體處理效率及效益,本研究乃藉由低溶氧生物攝磷及硝化反應動力參數之分析,以評估其程序控制之可行性並界定成效
    限制因子,並結合線上即時量測溶氧轉換比率(at)及系統需氧速率(ODt+Dt)用以表現微生物用氧行為與特性的探討,研擬即時曝氣控制的方法,以控
    制CFSBR 系統於低溶氧環境中同時進行生物攝磷及氨硝化程序。研究結果顯示,CFSBR 系統之兼氣性微生物可被馴化及控制在低溶氧環境中進行生物攝磷及氨氮硝化程序。當微生物被馴化並控制在低溶氧環境進行生
    物攝磷及氨氮硝化程序過程中,突增曝氣量或改變系統溶氧濃度,將會干擾生物攝磷機制及降低氨氮硝化的速率,導致脫氮除磷成效的惡化。厭氧相所需維持的氧化還原狀態為低溶氧生物攝磷及氨氮硝化程序之成效限
    制因子。有效控制硝化產物以亞硝酸鹽及硝酸鹽的型式共同存在,且降低硝酸鹽與亞硝酸鹽的濃度比例,不僅可縮短缺氧脫硝反應的時間及促進脫硝反應的完全,同時可促使後續操作循環之厭氧相處於ORP < -250 mV 的氧化還原狀態,進而降低硝酸鹽對生物厭氧釋磷作用的抑制效應,使整體脫氮除磷效率大幅提昇。根據即時曝氣控制方法所量測之溶氧轉換比率與系統需氧速率等資訊,可瞭解CFSBR 系統微生物進行生物攝磷與硝化反應過程中的用氧行為,包括:系統溶氧進入微生物細胞以進行恢復代謝基質活性的時機、微生物活性恢復的機、及硝化反應型態等。結合上述的微生物用氧行為量測的方法修正即時曝氣控制方法,將可提高程序控制的穩定性與提昇整體操作效率及效益。


    The purpose of this study is to develop a real-time aeration control method to
    control the aerobic bio-phosphorus uptake and ammonia nitrogen nitrification
    processes operated under low DO level conditions, to increase the
    comprehensive performance of Continuous-Flow Sequencing Batch Reactor
    (CFSBR). The study results showed the facultative organisms in CFSBR
    could be acclimated and controlled under low DO levels and low ORP states to
    perform the simultaneous bio-phosphorus uptake and ammonia nitrogen
    nitrification processes, and high comprehensive performance of CFSBR were
    obtained. The performance limiting factor of low DO level bio-phosphorus
    uptake and nitrification processes is the ORP state in anaerobic phases.
    Control the nitrified productions were coexistence of NO2
    --N and NO3
    --N, as
    well as low NO3
    --N/NO3
    --N ratios were presented, could increase the efficiency
    of the anoxic denitrification processes and eliminate the inhibition effects of
    bio-phosphorus release in the anaerobic phases, thus increase the performance
    of low level bio-phosphorus uptake and nitrification processes. The on-line
    measured information of the oxygen transfer ratios and the oxygen demand rates could characterize the microbial oxygen utilization behaviors in the low DO level bio-phosphorus uptake and ammonia nitrogen nitrification processes.Integrate the on-line measured information of the oxygen transfer ratios and the oxygen demand rates into the real-time aeration control method could increase
    the stability of process controls and the effectiveness of operations.

    第一章前言1 1.1 研究緣起1 1.2 研究目的2 1.3 研究內容及流程3 第二章文獻回顧6 2.1 CFSBR 系統脫氮除磷程序之沿革6 2.1.1 厭氧相生化反應機制及其影響因子8 2.1.2 好氧相生化反應機制及其影響因子16 2.1.3 缺氧相生化反應機制及其影響因子22 2.1.4 再曝氣相24 2.1.5 沉澱相26 2.2 CFSBR 系統自動監測控制系統之發展26 2.2.1 廢水自動監測控制設備之研究及應用27 2.2.1.1 DO 原理及其於廢水處理上的應用27 2.2.1.2 pH 原理及其於廢水處理上的應用29 2.2.1.3 ORP 原理及其於廢水處理上的應用30 2.2.2 CFSBR 系統自動監測控制系統之研究40 第三章問題瞭解與解決方案44 3.1 CFSBR 系統程序控制上的問題瞭解44 3.1.1 除磷成效不穩定的問題與原因44 3.1.2 ORP/pH 即時監測控制點受干擾的問題與原因53 3.1.3 污泥沉降性不良的問題與原因55 3.2 解決方案之研擬與執行成效評估59 3.2.1 溶氧即時控制策略59 3.2.2 即時曝氣控制策略65 第四章低溶氧生物攝磷與氨氮硝化之理論與假說69 4.1 CFSBR 系統之界定69 4.2 含碳有機物之好氧代謝71 4.3 生物除磷機制73 4.3.1 生物除磷菌厭氧代謝模式78 4.3.2 生物除磷菌好氧代謝模式84 4.3.3 生物除磷反應動力參數之比較87 4.4 生物除氮機制89 第五章研究設備及方法92 5.1 研究設備及材料92 5.1.1 連續流循序批分式活性污泥系統92 5.1.2 人工廢水組成與活性污泥98 5.1.3 實驗分析設備與水質分析方法102 5.2 程序控制與反應動力參數分析方法104 5.2.1 操作相即時控制方法104 5.2.2 比基質去除率計算方法104 5.2.3 決定qS,max 及KS 方法106 第六章結果與討論107 6.1 低溶氧生物攝磷及氨氮硝化程序之可行性評估107 6.2 低溶氧生物攝磷及氨氮硝化程序成效限制因子之界定115 6.3 低溶氧生物攝磷及氨氮硝化程序微生物用氧行為之界定117 6.3.1 氧進入微生物細胞時機之界定117 6.3.2 微生物恢復基質代謝活性時機之界定120 6.3.3 系統需氧速率與硝化反應型態之關係123 6.4 修正即時曝氣控制方法及其執行成效評估125 6.4.1 修正即時曝氣控制方法125 6.4.2 即時曝氣控制執行成效評估130 第七章結論與建議136 5.1 結論136 5.2 建議137 參考文獻138 附錄:水質分析方法150

    [1] 阮春騰、歐陽嶠暉,「改良式單槽連續進流間歇曝氣系統處理特性之
    初步研究」,第十七屆廢水處理技術研討會論文集,中壢(1992)。
    [2] 歐陽嶠暉、何明宗、廖述良,「改良式連續流回分活性污泥法最適處
    理之研究」,第十八屆廢水處理技術研討會論文集,台中(1992)。
    [3] 廖述良,「廢水處理系統最佳化之研究-改良式連續回分式活性污泥
    系統自動化與最佳化(III)」,行政院國科會研究計畫報告,中央大學,
    中壢(1998)。NSC-87-2211-E-008-006
    [4] 廖述良,「簡易廢水處理系統自動監控系統之研究與發展」,行政院
    國科會研究計畫報告,中央大學,中壢(2001)。
    [5] 謝汶興、廖述良、呂學智、余瑞芳,「單槽連續流回分式活性污泥系
    統操作特性之初探」,第十九屆廢水處理技術研討會論文集,台南
    (1994)。
    [6] 呂學智、廖述良、余瑞芳、陳萬原,「單槽連續流回分式活性污泥系
    統自動化監控之初步研究— 以ORP、pH、DO 為監控參數之探討」,
    第二十屆廢水處理技術研討會論文集, 台北( 1995 )。
    NSC-84-2211-E-008-002
    [7] 陳萬原、廖述良、余瑞芳,「單槽連續流SBR 廢水處理系統即時自
    動控制之研究」,第二十一屆廢水處理技術研討會論文集,台中
    (1996)。NSC-84-2211-E-008-006
    [8] 余瑞芳、陳萬原、廖述良、張鎮南,「類神經網路於連續流SBR 廢
    水處理系統即時控制之應用」,第二十一屆廢水處理技術研討會論文
    集,台中(1996)。NSC-84-2211-E-008-006
    [9] Yu, R. F., S. L. Liaw, C. N. Chang, H. J. Lu and W. Y. Cheng, “The
    139
    Monitoring and Control Using On-line ORP on Continuos-flow Sludge
    Batch Reactor,” Water Science and Technology, Vol. 35, No. 1, pp. 57-66
    (1997). NSC-84-2211-E-008-002
    [10] Yu, R. F., S. L. Liaw, C. N. Chang and W. Y. Cheng, ”Enhancing the
    Performance of Nitrogen Removal in Continuous-flow SBR system
    Using Real-time Control,” Journal of the Chinese Institute of
    Environmental Engineering Vol. 7, No. 4, pp. 319-328 (1997).
    NSC-86-2211-E-008-005
    [11] Yu, R. F, S. L. Liaw, C. N. Chang, and W. Y. Cheng, “Applying
    Real-time Control to Enhance the Performance of Nitrogen Removal in
    Continuous-flow SBR System,” Water Science and Technology, Vol. 38,
    No. 3, pp. 271-280 (1998). NSC-86-2211-E-008-005
    [12] 楊素禎、廖述良、余瑞芳、卓伯全、黃香賓珽,「單槽連續流回分式
    活性污泥系統處理動態進流污水自動控制之研究」,第二十四屆廢水
    處理技術研討會論文集,中壢(1999)。NSC-86-2211-E-008-005
    [13] 卓伯全、廖述良、余瑞芳、楊素禎,「應用類神經網路推估硝化及脫
    硝反應終點之可行性研究」,第二屆環境系統分析研討會,台南
    (1999)。NSC-86-2211-E-008-005
    [14] 卓伯全、廖述良、邱柏仁、余瑞芳,「應用類神經網路輔助建立動態
    連續進流循序批分式活性污泥系統之即時控制策略」,第二十五屆廢
    水處理技術研討會論文集,雲林(2000)。NSC-89-2211-E-008-070
    [15] Yu, R. F, S. L. Liaw, C. N. Chang, and W. Y. Chen, “Performance
    Enhancement of a SBR Applying Real-time Control,” J. of
    Environmental Engineering, ASCE, Vol. 126, No. 10, pp. 943-948
    (2000). NSC-86-2211-E-008-005
    [16] Cho, B. C., C. N. Chang, S. L. Liaw, P. T. Huang, “The Feasible
    140
    Sequential Control Strategy of Treating High Strength Organic Nitrogen
    Wastewater with Sequencing Batch Biofilm Reactor,” Water Science and
    Technology , Vol 43, No. 3, pp. 115-122. (2000).
    [17] Yu, R. F., S. L. Liaw, B. C. Cho, and S. J. Yang, “Dynamic Control of a
    Continuous-inflow SBR with Time-varying Influent Loading,” Water
    Science and Technology, Vol. 43, No. 3, pp.107-114. (2001).
    NSC-86-2211-E-008-005
    [18] Cho B. C, S. L. Liaw, C. N. Chang, R. F. Yu, S. J. Yang and B. R. Chiou
    “Development of a real-time control system with artificial neural
    network for automatic control of a continuous-flow sequencing batch
    reactor.” Water Science and Technology, Vol. 44, No. 1, pp.95-104.
    (2001). NSC 88-2211-E008-023.
    [19] 邱柏仁、廖述良、卓伯全、許添財,「單槽連續流回分式活性污泥系
    統溶氧控制之研究」,第二十六屆廢水處理技術研討會論文集,高雄
    (2001)。NSC 89-2211-E-008-070
    [20] 許添財、廖述良、卓伯全、林孟君、王祥洲,「連續流循序批分式活
    性污泥好氧相曝氣控制策略之研究— 線上即時量測溶氧轉換率與需
    氧量方法之建立」,第二十七屆廢水處理技術研討會論文集,台北
    (2002)。NSC 89-2211-E-008-070
    [21] 卓伯全、廖述良、許添財、林孟君、王祥洲,「連續流循序批分式活
    性污泥系統低溶氧生物攝磷現象之探討」,第二十七屆廢水處理技術
    研討會論文集,台北(2002)。NSC 89-2211-E-008-070
    [22] 歐陽嶠暉,下水道工程學(2001),增改訂三版,長松文化公司。
    [23] Water Environment Federation, ISBN: 1-57278-123-8 (1998).
    Biological and Chemical Systems for Nutrient Removal.
    [24] U.S. Environmental Protection Agency, ISBN: 1-56676-135-2.
    141
    Nitrogen Control. TECHNOMIC Publishing Company, Inc.
    [25] Metcalf and Eddy (1991). Wastewater Engineering-Treatment, Disposal,
    Reuse. 3rd edition, McGraw-Hill International Editions.
    [26] Buchuan L. (1983). Possible Biological Mechanism of Phosphorus
    Removal. Wat. Sci. Tech., 15, 3/4, 87.
    [27] Mino T. (1987). Effect on Phosphorus Accumulation on Acetate
    Metabolism in the Biological Phosphorus Removal Process. In
    Advances in Water Pollution Control: Biological Phosphate Removal
    from Wastewaters. R. Ramadori (Ed.), Pergamon Press, Oxford, Eng.
    [28] Comeau Y., Hall K. J., Hancock R. E. W. and Oldham W. K. (1986).
    Biochemical Model of Enhanced Biological Phosphorus Removal. Wat.
    Res. (G.B.), 20, 12, 1151-1521.
    [29] Comeau Y. (1987). In Advances in Water Pollution Control: Biological
    Phosphate Removal from Wastewaters. R. Ramadori (Ed.), Pergamon
    Press, Oxford, Eng.
    [30] Schon G., Geywitz S and Mertens F. (1993). Influence of Dissolved
    Oxygen and Oxidation Reduction Potential on Phosphate Release and
    Uptake by Activated Sludge from Sewage Plants with Enhance
    Biological Phosphorus Removal. Wat. Res., 27, 3, 349-354.
    [31] Maiais D. and Jenkins D. (1992). The Effect of MCRT and
    Temperature on Enhanced Biological Phosphorus Removal. Wat. Sci.
    Tech., 26, 5-6, 955-965.
    [32] Koch F. A. and Oldham W. K. (1985). Oxidation-Reduction
    Potential— A Tool for Monitoring Control and Optimization of
    Biological Nutrient Removal System. Wat. Sci. Tech., 17, Peris,
    259-281.
    142
    [33] Tracy K. D. and Flammino A. (1985). Kinetics of Biological
    Phosphorus Removal. 58th Annu. Conf. Water Pollut. Control Fed.,
    Kansas City, Mo.
    [34] Fukase T. (1982). Studies on the Mechanism of Biological Phosphorus
    Removal. Jpn. J. Water Pollut. Res., 5, 309.
    [35] 林瑩峰、荊樹人、許菁珊、凌瓔玫、蔡永能(1997),階梯入料對間歇
    曝氣回分是活性污泥系統脫氮除磷之影響,第二十二屆廢水處理技
    術研討會論文集,第432-439 頁。
    [36] Kuba T., Achtmeisterm A., van Loosderecht M. C. M. and Heijene J. J.
    (1994). Effect of Nitrate on Phosphorus Release in Biological
    Phosphorus Removal System. Wat. Sci. Tech., 30, 6, 263-269.
    [37] 曾四恭、林百文(1997),有機碳源量與種類對去磷機制之研究,第二
    十二屆廢水處理技術研討會論文集,第423-431 頁。
    [38] 陳萬原(1996),單槽連續進流回分是活性污泥系統自動監控策略之研
    究— 以ORP、pH 為監控參數,國立中央大學環境工程研究所碩士論
    文。
    [39] 曾四恭、林百文(1997),生物去磷系統中不同硝酸鹽濃度廢水對釋磷
    特性探討,第二十屆廢水處理技術研討會論文集,第417-423 頁。
    [40] Sasaki K., Yamamoto Y., Hatsumeta K. T. S. and Tatewaki M. (1993).
    Simultaneous Removal of Nitrogen and Phosphorus in Intermittently
    Aerated 2-Tank Activated Sludge Process Using DO and ORP-Bending
    Point Control. Wat. Sci. Tech., 28, 11-12, 513-521.
    [41] Lie E. and Welander T. (1994). Influence of Dissovled Oxygen and
    Oxidation-Reduction Potential on the Denitrification Rate of Activated
    Sludge. Wat. Sci. Tech., 36, 6, 71-74.
    [42] Smolders G. J. F., Loosdrecht M. C. M. and Heijnen J. J. (1994). pH:
    143
    Key factor in the Biological Phosphorus Removal Process. Wat. Sci.
    Tech., 29, 7, 71-74.
    [43] Al-Ghusian I. A., Huang J. Hao O. J. and Lim B. S. (1994). Using pH
    as a Real-time Control Parameter for Wastewater Treatment and Sludge
    Digestion Process. Wat. Sci. Tech., 30, 4, 159-168.
    [44] Groeneweg J., Sellner B. and Tappe W. (1994). Ammonia Oxidation in
    Nitrosomonas at NH3 Concentration near Km: Effects of pH and
    Temperature. Wat. Res., 29, 12, 2561-2566.
    [45] 黃政賢(1992),水處理工程,曉園出版社。
    [46] Hood J. W. (1948). Measurement and Control of Sewage Treatment
    Process Efficiency by Oxidation-Reduction Potential. Sewage Works
    Journal, 22, 4, 640-653.
    [47] Heduit A. and Thevenot D. R. (1989). Relation Between Redox
    Potential and Oxygen Levels in Activated Sludge Reactors. Wat. Sci.
    Tech., Brighton, 21, 947-956.
    [48] Charpentier J. and Vachon A. (1991). ORP as a Control Parameter in a
    Single Sludge Biological Nitrogen and Phosphorus Removal Activated
    Sludge System. Water SA, 17, 2, 123-132.
    [49] Charpentier J., Godart H., Martin G. and Mogno Y. (1989).
    Oxidation-Reduction Potential as a Way to Optimize Aeration and C, N
    and P Removal: Experimental Basis and Various Full-Scale Examples.
    Wat. Sci. Tech., Brighton, 21, 1209-1223.
    [50] Eckenfelder W. W. and Hood J. W. (1951). The Application of
    Potential to Biological Waste Treatment Process Control. Proceeding
    of 6th Purdue Industrial Waste Conference, Feb. 21-23, Purdue
    University, West Lafayette, Indiana, 221-238.
    144
    [51] Watanabe S., Baba K. and Nogita S. (1985). Basic Studies on an
    ORP/External Carbon Source Control System for the Biological
    Denitrification Process. Instrumentation and Control Of Water and
    Wastewater Treatment and Transport System, 4th IAWPRC Workshop,
    27 April- 4 May, 641.
    [52] Peddie C. C., Mavinic D. S. and Jenkins C. J. (1990). Use of ORP for
    Monitoring and Control of Aerobic Sludge Digestion. J. Envi. Eng.,
    116, 3, 461-471.
    [53] Burbank N. P. Jr. (1981). ORP-A Tool for Process Controll. Process
    Isl. An. Conf. On Avt. Sludge Conf. Arthn Tech. Wisc., 65-79.
    [54] Jenkins C. J. and Mavinic D. S. (1989). Anoxic-Aerobic Digestion of
    Wastewater Activated Sludge: part II— Supernatant Characterics, ORP
    Monitoring Results and Overall Rating System. Environmental
    Technology Letters., 10,371-384.
    [55] Charpentier J., Florentz M. and David G. (1987). Oxidation-Reduction
    Potential (ORP) Regulation: A Way to Opitimize Pollution Removal and
    Energy Savings in the Low Load Activated Sludge Process. Wat. Sci.
    Tech., 19, Rio, 645-655.
    [56] Sedlak, R. (1991). Phosphorus and Nitrogen Removal from Municipal
    Wastewater, Lewis Publishers.
    [57] Menardiere P. H., Roland D. D. and William H. P. (1991).
    Transformation of Selenium as Affected by Sediment
    Oxidation-Reduction Potential and pH. Env. Sci. Tech., 24, 1, 91-96.
    [58] Wareham, D. G., Mavinic D. S. and Kenneth J. H. (1993). Sludge
    Digestion Using ORP-Regulated Aerobic-Anoxic Cycles. Wat. Res.,
    28, 2, 373-384.
    145
    [59] Rothberg M. R., Phillip A. S. and William F. B. (1993). Single Basin
    Process Removes Nitrogen. Wat. Sci. Tech., April, 58-63.
    [60] Bortone G., Gemelli S., Rambaldi A. and Tilche A. (1992).
    Nitrification, Denitrification and Biological Phosphate Removal in
    Sequencing Batch Reactors Treating Piggery Wastewater. Wat. Sci.
    Tech., 26, 5-6, 977-985.
    [61] 曾四恭、王興舜(1993),單槽回分式活性污泥程序進行養豬廢水中
    N、P 去除之研究,中國水利工程學會第十八屆廢水處理技術研討會
    論文集,441-453。
    [62] 張鎮南、余瑞芳、陳婉如(1993),好氧生物處理系統中ORP 控制技術可行
    性研究,第十入屆廢水處理技術研討會論文集,317-330。
    [63] 張鎮南、陳婉如(1994),以ORP 作為連序式活性污泥法(SBR)去除含碳、
    氮、磷化合物自動控制之初探,第十九屆廢水處理技術研討會論文集,
    217-226。
    [64] 張鎮南、許峰賓(1995),不同控制程序下SBR 脫氮程序N2O 產生特性之
    初步探討,第二十屆廢水處理技術研討會論文集,2-31— 2-37。
    [65] 卓伯全、張鎮南(1996),以連續批分式接觸材程序分解含高氮有機物
    之研究,第二十一屆廢水處理技術研討會論文集,176-183。
    [66] Doong R. A. and Wu S. C. (1992). The Effect of Oxidation-Reduction
    Potential on the Biotransformation of Chlorinated Hydrocarbons. Wat.
    Sci. Tech., 26, 1-2, 159-169.
    [67] Couillard D., Chartier M. and Mercier G. (1991). Bacterial Leaching of
    Heavy Metals from Aerobic Sludge. Bioresource Technology, 36,
    293-302.
    [68] Chang C. N., Lin J. G., Chao A. C., Cho B. C. and Yu R. F. (1997). The
    Pretreatment of Acrylonitrile and Styrene with the Ozonation Process.
    146
    Wat. Sci. Tech., 36, 2-3, 263-270.
    [69] 卓伯全、張鎮南、許文龍、黃璸珽、潘子欽(1997),以預臭氧程序促
    進含高有機氮斐水氧化及提昇生物可分解性之研究,第二十二屆廢
    水處理技術研討會論文集,595-602。
    [70] Rittmann B. E. and McCarty P. L. (2001). Environmental
    Biotechnology: Principles and Applications. McGrew-Hill Companies,
    Inc.
    [71] Pramanik J., Trelstad P. L., Schuler A. J. Jenkins D. and Keasling J. D.
    (1999). Development and validation of a flux-based stoichiometric
    model for enhanced biological phosphorus removal metabolism. Wat.
    Res., 33, 2, 461-476.
    [72] Brock T. D. and Michael T. M. (1970). Biology of microorganism.
    [73] Cech J. S. and Hartman P. (1990). Glucose induced breakdown of
    enhanced biological phosphorus removal. Environ. Technol., 11, 651.
    [74] Cech J. S. and Hartman P. (1993). Competition between polyphosphate
    and polysaccharide accumulating bacteria biological phosphorus systems.
    Wat. Res., 27, 1219.
    [75] Satoh H., Mino T., Matsuo T. (1994). Deterioration of enhanced
    biological phosphorus removal by the domination of microorganisms
    without polyphosphate accumulation. Wat. Sci. Tech., 30, 203.
    [76] Liu W. T., Mino T., Nakamura K., Matsuo T. (1994). Role of glycogen
    in acetate uptake, and polyhydroxyalkanoate synthesis in
    anaerobic-aerobic activated sludge with a minimized polyphosphate
    content. J. Ferm. Bioeng., 77, 535-40.
    [77] Matsuo T. (1994). Effect of the anaerobic solids retention time on
    enhanced biological phosphorus removal. Wat. Sci. Tech., 30, 193.
    147
    [78] Mino T, Van Loosdrecht M. C. M., Hejjnen J. J. (1998). Microbiology
    and biochemistry of the enhanced biological phosphate removal process.
    Wat. Res., 32, 3193.
    [79] Dawes E. A. (1986). Microbial energetics. London: Blackie & Son
    Limited.
    [80] Wang N., Peng J. and Hill G. (2002). Biochemical model of glucose
    induced enhanced biological phosphorus removal under anaerobic
    condition. Wat. Res., 36, 1, 49-58.
    [81] Comeau Y., Rabinowitz B., Hall K. J. and Oldham W. K. (1987).
    Phosphate release and uptake in enhanced biological phosphorus
    removal from wastewater. J. Wat. Pollut. Control Fed., 59, 707-715.
    [82] Satoh H., Mino T. and Matsuo T. (1992). Uptake of organic substrates
    and accumulation of polyhydroxyalkanoates linked with glycolysis of
    interacellar carbohydrates under anaerobic conditions in the biological
    excess phosphate removal processes. Wat. Sci. Tech., 26, 5-6, 933-942.
    [83] Wentzel M. C., Lotter R. H., Loewenthal R. E. and Marais G. v. R.
    (1991). Evaluation of biochemical models for biological phosphorus
    removal. Wat. Sci. Tech., 23, 567.
    [84] Gottschalk G. (1986). Bacterial metabolism. Berlin: Springer-Verlag
    New York Inc.
    [85] Wang N., Hill G. and Peng J. (2002). The role of glucose in developing
    enhanced biological phosphorus removal. Environ. Eng. Policy, 3,
    45-54.
    [86] Dawes E. A. and Senior P. J. (1973). The role and regulation of energy
    reserve polymers in microorganisms. Adv. Micro. Physiol., 10, 136.
    [87] Gaudy F. A. (1978). Microbiology of environmental scientists and
    148
    engineers. McGraw-Hill Book Company: New York.
    [88] Bailey J. E. and Ollis D. F. (1986). Biochemical engineering
    fundamentals. McGraw-Hill Book Company: New York.
    [89] Susanne T. (1997). Propionate oxidation in E. Coli. Arch. Microbiol.,
    168, 428-436.
    [90] Smolders G. J. F., Meiji v. d. j, Loodrecht v. M. C. M. and Heijnen J. J.
    (1994). Stoichiometric model of the aerobic metabolism of the
    biological phosphorus removal process. Biotechnol. Bioeng., 44,
    837-848.
    [91] Wang N., Hill G. and Peng J. (2002). Mathematical model for the
    microbial metabolism of glucose induced enhanced biological
    phosphorus removal in an anaerobic/aerobic sequential batch reactor.
    Environ. Eng. Policy, 3, 87-99.
    [92] Smolders G. J. F., Meiji v. d. j., Loodrecht v. M. C. M. and Heijnen J. J.
    (1995). A structured metabolic model for the anaerobic and aerobic
    stoichiometry and kinetics of the biological phosphorus removal process.
    Biotechnol. Bioeng., 47, 277-287.
    [93] Painter H. A. (1970). A review of literature on inorganic nitrogen
    metabolism in microorganisms. Wat. Res., 4, 6, 393.
    [94] McCraty P. L. (1964). Thermodynamics of biological synthesis and
    growth. Proceedings of the 11th Int. Conf. on Water Poll. Res., Tokyo,
    Japan, 169-199.
    [95] Turk O. and Mavinic D. S. (1986). Preliminary assessment of a
    shortart in nitrogen removal from wastewater. Can. J. Civ. Engrs., 13,
    600-605.
    [96] Balmelle B., Nguyen K. M., Capdeville B., Cornier J. C. and Deguin A.
    (1992). Study of factors controlling nitrite build-up in biological
    processes for water nitrification. Wat. Sci. Tech., 26, 1017-1025.
    [97] Rahmani H., Rols J. L., Capdeville B., Cornier J. C. and Deguin A.
    (1995). Nitrite removal by a fixed culture in a submerged granular
    biofilter. Wat. Res., 29, 7, 1745-1753.
    [98] Lee D. S., Jeon C. O. and Park J. M. (2001). Biological nitrogen
    removal with enhanced phosphate uptake in a sequencing batch reactor
    using single sludge system. Wat. Res., 35, 16, 3968-3976.
    [99] Kuba T., van Loosdrecht M. C. M. and Heijnen J. J. (1996). Effect of
    cyclic oxygen exposure on the activity of denitrifying phosphorus
    removing bacteria. Wat. Sci. Tech., 34, 1-2, 33-40.
    [100] Wachtmeister A., Kuba T. and van Loosdrecht M.C.M. (1997). A
    sludge characterization assay for aerobic and denitrifying phosphorus
    removing sludge. Wat. Res., 3, 3, 471-478.
    [101] Chuang S.H., Ouyang C.F., Yuang H.C. and You S.J. (1998).
    Evaluation of phosphorus removal in anaerobic-anoxic-aerobic
    system-via polyhydroxyalkonoates measurements. Wat. Sci. Tech., 38,
    1, 107-114.
    [102] Gupta S.K. and Sharma R. (1996). Biological oxidation of high
    strength nitrogenous wastewater. Wat. Res., 30, 3, 593-600.
    [103] Drtil M., Nemeth P. and Bodik I. (1993). Kinetic constants of
    nitrification. Wat. Res., 27, 35-39.

    QR CODE
    :::