| 研究生: |
高正華 Z-H Gao |
|---|---|
| 論文名稱: |
Pb、Cu元素對熱壓燒結Al-Si合金磨耗腐蝕行為之影響 Effect of Alloying Elements on the Wear-Corrosion Behavior of Al-Si Alloys |
| 指導教授: |
李勝隆
Sheng-long Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 磨耗腐蝕 、鋁 、鉛 |
| 外文關鍵詞: | wear, corrosion, Al, Pb |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結果顯示經熱壓製成之Al-Si-Pb-Cu複合材料,其緻密度約為理論密度的99%。添加Cu於Al-Si與Al-Si-Pb合金中可提升其硬度,其中Al-Si-Pb-Cu合金之硬度提升比例隨Pb含量增加而上升。於乾磨耗試驗中,合金磨耗量隨著Pb含量的增加而降低,而添加Cu於Al-Si合金中可強化基地,進一步提升其抗磨耗性質。而於腐蝕實驗中,添加Pb、Cu元素均會使合金之腐蝕電流上升,然而,當合金經熱處理後,除了Al-Si合金腐蝕電流升高外,其餘合金之腐蝕電流皆下降,並且腐蝕電位也顯得較為鈍性。此外,添加Pb則可促進合金的鈍化。
Al-Si-Pb合金之熱處理溫度顯著影響其腐蝕性質,當熱處理溫度(300℃)低於Pb熔點時,會使Pb的析出相粗大,導致腐蝕電流急劇升高,而當熱處理溫度(370℃)高於Pb熔點時,則Pb的析出相明顯細化並增加其抗蝕性。Al-Si合金具有優良之磨耗腐蝕性質,磨耗量隨外加電位往陽極增加而降低,而添加Pb和Cu皆可提升Al-Si合金之耐磨耗腐蝕性質,並且含Pb合金,由於具有良好的鈍化行為,當外加電位達鈍化區時,腐蝕電流與磨耗量皆明顯下降。
1. G. Timmermans, L. Froyen, “Fretting wear behaviour of hypereutectic P/M Al-Si in oil enviroment”, Wear 230 (1999) 105-117.
2. M. J. Smith and R. M. Smith, “Aluminum Engines-design for modern fabrication”, SAE Transactions, 67 (1959) 295-307.
3. K. Mohawwed Jasim, “Nature of subsurface damage of Al-22wt.%Si alloys sliding dry on steel discs at high sliding speeds”, Wear, 98 (1984) 183-197.
4. V. O. Abramov, O. V. Abramov, F. Sommer, D. Orlov, “Properties of Al-Pb base alloys applying electromagnetic forces and ultrasonic vibration during casting”, Materials Letters 23 (1995) 17-20.
5. B. N. Pramila Bai, E. S. Dwarakadasa, S. K. Biswas, “Scanning electron microscopy studies of wear in LM13 and LM13-Graphite particulate composite”, Wear, 76 (1982) 211-220.
6. R. G. Wendt, W. C. Moshier, B. Shaw, P. Miller, D. L. Olson, “Corrosion-Resistance aluminum matrix for graphite-aluminum composites”, Corrosion Vol. 50, No. 11, 1994, pp. 819-826.
7. C. S. Sivaramakrishnan, R. K. Mahanti, R. Kumar, “The dispersion of lead and graphite in aluminum alloys for bearing applications”, Wear, 96 (1984) 121-134.
8. J. P. Pathak, V. Singh, S. N. Tiwari, “Effect of lead content on tensile fracture of Al-4.5Cu-Pb bearing alloy”, Journal of Materials Science Letters 12 (1993) 1450-1452.
9. Ashok Sharma, T. V. Rajan, “Scanning electron microscopic studies of worn-out leaded aluminum-silicon alloy surfaces”, Wear, 174 (1994) 217-228.
10. H. Torabian, J. P. Pathak, S. N. Tiwari, “On wear characteristics of leaded aluminum-silicon alloys”, Wear, 177 (1994) 47-54.
11. M. Zhu, Y. Gao, C. Y. Chung, Z. X. Che, K. C. Luo, B. L. Li, ”Improvement of the wear behaviour of Al-Pb alloys by mechanical alloying”, Wear, 242 (2000) 47-53.
12. D. P. Howe, M. Mee, A. A. Torrance, J. D. Williams, “Al-Pb-Si-In bearing alloy”, Materials Science and Tecnology, Vol. 7, April 1991, pp. 330-333.
13. A. P. Sannino, H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites : review and discussion”, Wear, 189 (1995) 1-19.
14. 陳豐彥, 何信威, “粉末冶金技術手冊 : 燒結摩擦材料”, 中華民國粉末冶金協會, 1994, pp. 445-457.
15. B. K. Prasad, “Dry sliding wear response of some bearing alloys as influenced by the nature of microconstituents and sliding conditions”, Metallurgical and Materials Transactions A, Vol. 28A, 1997, pp. 809-815.
16. A. D. Sarkar, J. Clarke, “ Wear characteristics, frictions and surface topography observed in the dry sliding of as-cast and aging- hardening Al-Si alloys”, Wear, 75 (1982) 71-85.
17. Szu Yin Yu, Hitoshi Ishii, Keiichiro Tohgo, Young Tae Cho, Dongfeng Diao, “Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite”, Wear, 213 (1997) 21-28.
18. S. C. Tjong, K. C. Lau, “Properties and abrasive wear of TiB2 / Al-4%Cu composites produced by hot isostatic pressing”, Composites Science and Technology 59 (1999) 2005-2013.
19. Rong Chen, Akira Iwabuchi, Tomoharu Shimizu, Hyung Seop Shin, Hidenobu Mifune, “The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites”, Wear, 213 (1997) 175-184.
20. Jian Zhang, Degui Zhu, Liu Yang, Shizhuo Li, “Wear behavior of lanxide Al2O3/Al composite”, Wear, 215 (1998) 34-39.
21. Karl-Heinz Zum Gahr, “Microstructure and wear of materials”, Elsevier Science Publishing Company Inc., 1987, pp. 80-106.
22. D. A. Jones, “Principles and Prevention of Corrosion 2nd ed.”, Prentice Hall International, Inc., 1997, pp. 86-92.
23. J. R. Davies, “ASM Specialty HandBook : Aluminum and Aluminum alloys”, William W. Scott, Jr., 1993, pp. 579-580.
24. 鮮祺振, 劉國橋, “金屬腐蝕及其控制”, 徐氏基金會出版社, 1990, pp. 295-304.
25. M. G. Gontana, “Corrosion Engeering 3rd ed.”, McGraw-Hill Inc., 1986, pp. 41-50.
26. D. A. Jones, “Principles and Prevention of Corrosion 2nd ed.”, Prentice Hall International, Inc., 1997, pp. 170.
27. M. G. Gontana, “Corrosion Engeering 3rd ed.”, McGraw-Hill Inc., 1986, pp. 53-55.
28. 柯賢文, “腐蝕及其防制”, 全華出版社, 1998, pp. 55-73.
29. J. M. West, “Electrodeposition and Corrosion Process”, Van Nostrand Reinhold, 1971, pp. 28-36.
30. C. K. Fang, C. C. Huang, T. H. Chuang, “Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminum matrix composites”, Metallurgical and Materials Transactions A, Vol. 30A, 1999, pp. 643-651.
31. C. K. Lee, H. C. Shih, “ Structure and corrosive wear resistance of plama-nitrided alloy steels in 3% sodium chloride solutions”, Corrosion Vol. 50, No. 11, 1994, pp. 848-856.
32. I. Iwasaki, S. C. Riemer, J. N. Orlich, “Corrosive and abrasive wear in ore grinding”, Wear, 1985, Vol. 103, pp. 253-267.
33. S. W. Watson, B. W. Madsen, S. D. Cramer, “Wear-Corrosion study of white cast irons”, Wear, Vol. 181-183, 1995, 469-475.
34. J. F. Modolfo, “Aluminum Alloys : Structure and Properties”, Butter Worth&Co., London&Bostone, 1976, pp. 15.
35. R. M. German, K. F. Hens, J. L. Johnson, “Powder Metallurgy Processing of thermal management materials for microelectronic applications”, The International Journal of Powder Metallurgy, 1994, Vol. 30, No. 2, pp. 205-215.
36. ASTM Designation : G 69-97, pp. 268-271.
37. ASTM Designation : G 1-90, pp. 15-21.
38. D. Y. Ying, D. L. Zhang, “Solid-state reactions Cu and Al during mechanical alloying and heat treatment”, Journal of Alloys and Compounds, Vol. 311, 2000, pp. 275-282.
39. S. Long, O. Beffort, C. Cayron, C. Bonjour, “Microstructure and mechanical properties of a high volume fraction SiC particle reinforced AlCu4MgAg squeeze casting”, Materials Science and Engineering A, Vol. 269, 1999, pp. 175-185.
40. K. I. Moore, D. L. Zhang, B. Cantor, “Solidification of Pb particles embedded in Al”, Acta Metallurgica et Materialia, Vol. 38, No. 7, 1990, pp. 1327-1342.
41. R. Goswami, K. Chattopadhyay, “The superheating and the crystallography of embedded Pb particles in f.c.c. Al, Cu and Ni Matrices”, Acta Metallurgica et Materialia, Vol. 43, No. 7, 1995, pp. 2837-2847.
42. Ashok Sharma, T. V. Rajan, “Bearing characteristics of cast leaded aluminum-silicon alloys”, Wear, 197 (1996) 105-114.
43. J. Clarke, A. D. Sarkar, “Topographical features observed in a scanning electron microscopy study of aluminum alloy surface in sliding wear”, Wear, 69 (1981) 1-23.
44. Hang-Moule Kim, Taek-Soo Kim, C. Suryanarayana, Byong-Sun Chun, “Microstructure and wear characteristics of rapidly solidified Al-Pb-Cu alloys”, Materials Science and Engineering A, Vol. 287, 2000, pp. 59-65.