| 研究生: |
陳翔傑 Hsiang-Chieh Chen |
|---|---|
| 論文名稱: |
自動化車牌辨識系統設計 Automatic vehicle license plate recognition system design |
| 指導教授: |
王文俊
Wen-June Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 字元辨識 、車牌定位 、車牌辨識 |
| 外文關鍵詞: | license plate recognition, license plate locating, characters recognition |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,車牌辨識系統在智慧型運輸系統的應用上一直扮演著相當關鍵的角色,且可應用於停車管控、贓車追緝與車輛檢驗等範疇。因此,本篇論文提出一套低運算量、高辨識率的車牌辨識流程,並實現了即時車牌辨識系統的軟體開發與硬體規劃。
考慮本系統未來產品化的彈性與價格需求,在硬體規劃方面:個人電腦、影像卡與攝影機都盡量以低成本為考量;在演算流程方面,則在高辨識率的前提下,盡可能地降低演算法的複雜度。本論文將車牌辨識劃分為三個階段,分別為車牌定位、字元切割與字元辨識,並詳述於本文之第三章、第四章與第五章。以 C++ 為程式開發語言,實現於 MS Window XP 平台上,本篇論文具體成果歸納如下:
1.於車牌定位方面,植基於空間的點遮罩運算,提出了方格切割的概念,在複雜背景下擷取車牌位置時可避免不必要之雜訊干擾。
2.於字元切割方面,提出了補償的方法,使得某些車牌的髒污、傾斜與光線影響可以降至最小。
3.於字元辨識方面,利用本論文提出之相似度估測及採用階層式比對法則,大大提高了字元辨識率。
由實驗與結果的分析來看,本篇論文之演算流程的確有效地降低複雜度且於不同的距離與角度的測試下,保有了高辨識率的優點,可謂是相當實用之系統。
Recently, vehicle license plate recognition system plays an important role in intelligent transportation system. This paper will propose an algorithm with low computation and high recognition rate algorithm to realize a real time license plate recognition system. We divide our system into three stages, including license plate locating, characters segmentation and characters recognition. A novel method for extracting license plate in complex background is proposed. Due to the influence of lighting effects, tilt or dirty of the license plate, we also create a method to compensate these cases. In characters recognition, template matching and similarity measure are used such that our algorithm is more robust in different inclination and lighting conditions.
[1]S. L. Chang, L. S. Chen, Y. C. Chung and S. W. Chen, “Automatic license plate recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, pp. 42-53, Mar. 2004
[2]H. L. Bai, J. M. Zhu and C. P. Liu, “A fast license plate extraction method on complex background,” in Proc. IEEE Intelligent Transportation Systems, vol. 2, pp.985-987, Oct. 2003
[3]W. G. Zhu, G. J. Hou and X. Jia, “A study of locating vehicle license plate based on color feature and mathematical morphology,” in Proc. IEEE International Conference on Signal Processing, vol. 1, pp. 748-751, 2002
[4]W. Wu, M. J. Wang and Z. X. Huang, “An automatic method of location for number-plate using color features,” in Proc. IEEE International Conference on Image Processing, pp. 782-785, 2001
[5]W. Wu Wei, Y. Z. Li, M. J. Wang and Z. X. Huang, “Research on number-plate recognition based on neural networks,” in Proc. Neural Networks for Signal Processing, IEEE Signal Processing Society Workshop, pp. 529-538, Sep. 2001
[6]C. A. Rahman, W. Badawy and A. Radmanesh, “A real time vehicle''s license plate recognition system,” in Proc. IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 163-166, July 2003
[7]H. A. Hegt, R. J. de la Haye and N. A. Khan, “A high performance license plate recognition system,” in Proc. IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4357-4362, Oct. 1998
[8]C. Coetzee, C. Botha and D. Weber, “PC based number plate recognition system,” in Proc. IEEE Symposium on Industrial Electronics, vol. 2, pp. 605-610, July 1998
[9]P. Comelli, P. Ferragina, M. N. Granieri and F. Stabile, “Optical recognition of motor vehicle license plates,” IEEE Transactions on Vehicular Technology, vol. 44, pp. 790-799, Nov. 1995
[10]Y. P. Huang, S. Y. Lai and W. P. Chuang, “A template-based model for license plate recognition,” in Proc. IEEE International Conference on Networking, Sensing and Control, vol. 2, pp. 737-742, March 2004
[11]M. A. Ko and Y. M. Kim, “License plate surveillance system using weighted template matching,” in Proc. The 32nd Applied Imagery Pattern Recognition Workshop, pp. 269-274, Oct. 2003
[12]V. Koval, V. Turchenko, V. Kochan, A. Sachenko and G. Markowsky, “Smart license plate recognition system based on image processing using neural network,” in Proc. The Second IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 123-127, Sep. 2003
[13]L. W. Jin and J. Z. Qin, “Car plate number characters recognition using Gabor orientation features and neural networks,” in Proc. The 2003 International Conference on Neural Networks and Signal Processing, vol. 2, pp. 1628-1631, Dec. 2003
[14]X. W. Wang, X. Q. Ding and C. S. Liu, “Optimized Gabor filter based feature extraction for character recognition,” in Proc. 16th International Conference on Pattern Recognition, vol. 4, pp. 223-226, Aug. 2002
[15]K. Chao and M. D. Srinath, “Invariant character recognition with Zernike and orthogonal Fourier–Mellin moments,” Pattern Recognition, vol. 35, no. 1, pp. 143-154, January 2002
[16]Y. C. Chim, A. A. Kassim and Y. Ibrahim, “Character recognition using statistical moments,” Image and Vision Computing, vol. 17, no. 3, pp. 299-307, March 1999
[17]H. Pu, H. Wei, D. F. Wang and Y. J. Zhai, “Car license plate feature extraction and recognition based on multi-stage classifier,” in Proc. International Conference on Machine Learning and Cybernetics, vol. 1, pp. 128-132, Nov. 2003
[18]N. Otsu, “A Thresholding Selection Method from Gray Level Histograms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62-66, 1979
[19]R. C. Gonzalez and R. E. Woods. (2002). Digital Image Processing. 2nd Edition
[20]林泰良(陳永耀 教授指導), “智慧型車牌定位與字串分割,” 碩士論文, 國立台灣大學電機工程所, 2000
[21]賴史詠(黃有評 教授指導), “以模板為基礎之車牌辨識系統設計與應用,” 碩士論文, 大同大學資訊工程所, 2002
[22]鍾國亮, “影像處理與電腦視覺,” 台灣東華書局股份有限公司, 2002年6月