跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂詩慧
Shih-hui Lu
論文名稱: 振動床中容器底盤粗糙因子對巴西豆現象之影響
The effect of bumpy surfaces on Brazil-nut problem in a vibrated granular bed
指導教授: 蕭述三
Shu-san Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 94
中文關鍵詞: 粒子流振動床巴西豆現象顆粒體傳輸性質粗糙因子
外文關鍵詞: Roughness factor, Transport properties, Brazil-nut, Vibrated bed, Granular flow
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究在垂直式振動床系統中改變容器底盤粗糙因子對巴西豆現象的影響。在實驗中首先藉由高速攝影機觀察紀錄顆粒體的動態行為,之後再藉影像技術及粒子追蹤方法計算出粗糙因子在不同振動條件下,大顆粒的垂直上升軌跡以及粗糙因子對顆粒體的傳輸性質的影響,最後討論粗糙因子在類二維系統及三維系統中對於巴西豆現象的影響是否一致。實驗結果顯示大顆粒的上升時間會隨粗糙因子的增加而增加,且在較小的無因次振動加速度及較大的振動頻率下,粗糙因子的不同對大顆粒上升時間的影響越明顯。大顆粒的滲透長度會隨著粗糙因子的增加而減少,粗糙因子越大,在每次振動下大顆粒與背景粒子間的消散的摩擦力也越大。此外,顆粒體的傳輸性質會隨著粗糙因子的增加而減弱,在粗糙因子較小的時候,因顆粒床所獲得的能量較多,故顆粒床的傳輸性質會比較強。在傳輸性質較強的情況下顆粒床流體化的現象會越明顯,造成分離現象較為顯著,大顆粒所需的上升時間也就較短;粗糙因子較大時,顆粒床體所能獲得的能量也較少,傳輸性質也會隨之減弱,顆粒床流體化程度降低也會造成大顆粒上升的時間增長。最後,實驗結果顯示不同粗糙因子對於巴西豆現象的影響在類二維系統與三維系統中相同。


    This study investigates experimentally the effect of the bumpy surfaces on Brazil-nut phenomenon in a vertical vibrated granular bed. The motions of the particle are recorded by a high speed camera and the dynamics of particles are measured by particle tracking method, and discuss the effect of roughness factor in quasi-2D and 3D system. The results show that the rising time increases with the increasing roughness factor, and the difference of the rising time with different roughness factor is more significant with the smaller dimensionless vibration acceleration and higher vibration frequency. It also shows that the penetration length of the intruder decreases with the increasing roughness factor, and the friction drag force between the intruder and the background particle increases with the increasing roughness factor. Additionally, the transport properties of particles decrease with the increasing roughness factor. The tank which has smaller roughness factor can obtain greater energy from vibrated bed, and causes the greater transport properties of granular bed. Hence the smaller roughness factor case has smaller rising time and stronger Brazil-nut phenomenon. The tank with the bigger roughness factor could receive smaller energy from vibrated bed, resulting in the weaker transport properties. Hence the bigger roughness factor case has the longer rising time and weaker Brazil-nut phenomenon. Finally, the result shows that the influence of roughness factor on Brazil-nut effect in quasi-2D and 3D system is similar.

    摘要 I Abstract II 目錄 III 附表目錄 V 附圖目錄 VI 符號說明 VIII 第一章 簡介 1 1.1 粒子流簡介 1 1.2 顆粒體在振動床中的運動行為 1 1.3 顆粒體在垂直式振動床中的分離現象 4 1.4 容器底盤形狀不同對於粒子流的影響 8 1.5 研究動機與架構 9 第二章 實驗設備與方法 11 2.1 實驗設備 11 2.2 實驗原理與方法 15 2.2.1 實驗參數 15 2.2.2 追蹤大顆粒上升之影像分析 16 2.2.3 顆粒體傳輸性質影像分析 16 2.3 顆粒體傳輸性質介紹 18 2.3.1 粒子溫度簡介 18 2.3.2 自我擴散理論 18 2.3.3 無因次質量流率 19 2.4 實驗步驟 20 2.5 誤差分析 21 第三章 結果與討論 23 3.1 類二維振動床系統中底盤粗糙因子對巴西豆現象之影響 23 3.1.1 底盤粗糙因子對巴西豆現象之影響 23 3.1.2 不同無因次振動加速度下底盤粗糙因子對巴西豆現象之影響 24 3.1.3 不同振動頻率下底盤粗糙因子對巴西豆現象之影響 27 3.2 底盤粗糙因子對顆粒體傳輸現象之影響 29 3.3 三維振動床系統中底盤粗糙因子對巴西豆現象之影響 32 第四章 結論 34 參考文獻 35

    Ciamarra, M. P., De Vizia, M. D., Fierro, A., Tarzia, M., Coniglio, A. and Nicodemi M., 2006, “Granular species segregation under vertical tapping: Effects of size, density, friction, and shaking amplitude,” Physical Review Letters, Vol. 96, 058001.
    Cooke, W., Warr, S., Huntley, J. M. and Ball, R. C., 1996, “Particle size segregation in a two-dimensional bed undergoing vertical vibration,” Physical Review E, Vol. 53, pp. 2812-2822.
    Duran, J., Mazozi, T., Clement, E. and Rajchenbach, J., 1994, “Size segregation in a two-dimensional sandpile: Convection and arching effects,” Physical Review E, Vol. 50, pp. 5138–5141.
    Duran, J., Rajchenbach, J. and Clement, E., 1993, “Arching effect model for particle size segregation,” Physical Review Letters, Vol. 70, pp. 2431-2434.
    Elperin, T. and Golshtein, E., 1997, “Effects of convection and friction on size segregation in vibrated granular beds,” Physica A, Vol. 247, pp. 67-78.
    Faraday, M., 1831, “On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces,” Philosophical Transactions of the Royal Society of London, Vol. 121, pp. 299-340.
    Farkas, Z., Tegzes, P., Vukics, A. and Vicsek, T., 1999, “Transitions in the horizontal transport of vertically vibrated granular layers,” Physical Review E, Vol. 60, pp.7022-7030.
    Godoy, S., Risso, D., Soto, R. and Cordero, P., 2008, “Rise of a Brazil nut: A transition line,” Physical Review E, Vol. 78, 031301.
    Hsiau, S. S. and Chen, C. H., 2000, “Granular convection cells in a vertical shaker,” Powder Technology, Vol. 111, pp. 210-217.
    Hsiau, S. S. and Ku, C. F., 1998, “Particle segregation in a vertical shaker,” Advanced Powder Technology, Vol. 9, pp.219-227.
    Hsiau, S. S. and Pan, S. J., 1998, “Motion state transitions in a vibrated granular bed,” Powder Technology, Vol. 96, pp.219-226.
    Hsiau, S.S., Wang, P.C. and Tai, C.H., 2002, “Convection cells and segregation in a vibrated granular bed,” AIChE Journal, Vol.48, pp. 1430-1438.
    Hsiau, S. S. and Yu, H. Y., 1997, “Segregation phenomena in a shaker,” Powder Technology, Vol. 93, pp.83-88.
    Huerta, D. A. and Ruiz-Suarez, J. C., 2004, “Vibration-induced granular segregation: A phenomenon driven by three mechanisms,” Physical Review Letters, Vol. 96, pp.219-226.
    Jasti, V. and Higgs III C. F., 2008, ” Experimental study of granular flows in a rough annular shear cell,” Physical Review E, Vol. 78, 041306.
    Knight, J. B., Ehrichs, E. E., Kuperman, V. Y., Flint, Jaeger, H. M. and Nagel, S. R., 1996, “An experimental study of granular convection,” Physical Review E, Vol. 54, pp. 5726-5738.
    Knight, J. B., 1997, “External boundaries and internal shear bands in granular convection,” Physical Review E, Vol. 55, pp. 6016-6023.
    Knight, J. B., Jaeger, H. M. and Nagel, S. R., 1993, “Vibration-induced size separation in granular media: The convection connection,” Physical Review Letters, Vol. 92, pp. 3728-3731.
    Levanon, M. and Rapaport, D. C., 2001, “Stratified horizontal flow in vertically vibrated granular layers,” Physical Review Letters, Vol. 60, 011304.
    Liao, C. C., Hsiau, S. S., Tsai, T. H. and Tai, C. H., 2010, “Segregation to mixing in wet granular matter under vibration,” Chemical Engineering Science, Vol. 65, pp. 1109-1116.
    Lim, E. W., 2009, “Vibrated granular bed on a bumpy surface,” Physical Review E, Vol. 79, 041302.
    Lim, E. W., 2010, “Density segregation in vibrated granular beds with bumpy surfaces,” American Institute of Chemical Engineers, Vol.56, pp. 2588-2597.
    Lim, E. W., 2010, “Granular Leidenfrost effect in vibrated beds with bumpy surfaces,” European Physical Journal E, Vol. 32, pp. 365-375.
    Lu, L. S. and Hsiau, S. S., 2005, “Mixing in vibrated granular beds with the effect of electrostatic ford,” Powder Technology, Vol. 160, pp. 170-179.
    Lu, L. S. and Hsiau, S. S., 2008, “DEM simulation of particle mixing in a sheared granular flow,” Particuology, Vol. 6, pp. 445-454.
    Mobius, M. E., Cheng, X., Eshuis, P., Karczmar, G. S., Nagel, S. R. and Jaeger, H. M., 2005, ” Effect of air on granular size separation in a vibrated granular bed,” Physical Review E, Vol. 72, 011304.
    Mobius, M. E., Cheng, X., Karczmar, G. S., Nagel, S. R. and Jaeger, H. M., 2004, “Intruders in the dust: Air-driven granular size separation,” Physical Review Letters, Vol. 93, 198001.
    Nahmad-Molinari, Y., Canul-Chay, G. and Ruiz-Suarez, J. C., 2003, “Inertia in the Brazil nut problem,” Physical Review E, Vol. 68, 041301.
    Risso, D., Soto, R., Godoy, S. and Cordero, P., 2005, “Friction and convection in a vertically vibrated granular system,” Physical Review E, Vol. 72, 011305.
    Rodriguez-Linan, G. M. and Nahmad-Molinari, Y., 2006, “Granular convection driven by shearing inertial forces, ” Physical Review E, Vol. 73, 011302.
    Rosato, A., Strandburg, K. J., Prinz, F. and Swendsen, R. H., 1987, “Why the Brazil nuts are on top: Size segregation of particulate matter by shaking,” Physical Review Letters, Vol. 58, pp. 1038-1040.
    Saez, A., Vivanco, F. and Melo, F., 2005, “Size segregation, convection, and arching effect,” Physical Review E, Vol. 72, 021307.
    Shi, X., Miao, G. and Zhang, H., 2009, “Horizontal segregation in a vertically vibrated binary granular system,” Physical Review Letters, Vol. 80, 061306.
    Tai, C. H. and Hsiau, S. S., 2004, “Dynamic behaviors of powders in a vibrating bed,” Powder Technology, Vol. 139, pp. 221-232.
    Vanel, L., Rosato, A. D. and Dave R. N., 1997, “Rise-time regimes of a large sphere in vibrated bulk solids,” Physical Review Letters, Vol. 78, pp. 1255-1258.
    Yang, S. C. and Hsiau, S. S., 2000, “Simulation study of the convection cells in a vibrated granular bed,” Chemical Engineering Science, Vol. 55, pp.3627-3637.
    Yang, S. C., 2006, “Density effect on mixing and segregation processes in a vibrated binary granular mixture,” Powder Technology, Vol. 164, pp. 65-74.

    QR CODE
    :::