跳到主要內容

簡易檢索 / 詳目顯示

研究生: 方譚
VU Phuong Thanh
論文名稱: 利用質點傳輸進行三維離散裂隙含水層內之化學反應傳輸模擬
Particle tracking approach to model chemical reaction transport in 3D discrete fracture networks
指導教授: 倪春發
Chuen-Fa Ni
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 75
中文關鍵詞: 離散裂隙網格質點傳輸化學反應傳輸PCE降解
外文關鍵詞: DFN, Particle tracking, Chemical reaction transport, PCE degradation
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 裂隙為裂隙岩層中溶質傳輸的主要流徑,為了解析裂隙岩層中有害廢棄物濃度團的傳輸行為,了解岩層中的流場狀況是很重要的議題。然而,目前有關裂隙岩層中的化學船輸研究卻付之闕如。本研究提出模擬裂隙岩層中化學傳輸的技術,並選用 Discrete fracture network (DFN) 模擬裂隙岩層中的各個裂隙並藉以獲得岩層中的詳細地下水流場狀況。本研究選用Fracman結合裂隙相關參數(如位態、尺寸與間隙)產生三維裂隙含水層,並結合質點傳輸particle tracking (PT)、化學反應以進行四氯乙烯Tetrachloroethylene (PCE)傳輸與降解模擬。本研究首先考慮僅有三個裂隙的簡易裂隙含水層進行該技術的測試與驗證,接著再利用裂隙場址所獲得的相關參數進行現地複雜裂隙研究,最後再考慮現地井注入汙染團至複雜裂隙含水層以研究污染團之移動與降解狀況。簡易裂隙含水層之模擬結果顯示本技術能獲得良好成果,而複雜裂隙與單井注入情境則表明本技術能在現地複雜狀況下獲得PCE之詳細傳輸與降解情況。本研究所提供之技術預期將能為裂隙含水層中水流移動、污染團傳輸與降解之模擬與預測,以及後續之應變與處理提供一良好工具進行相關之後續研究。


    Fractures are major flow paths for solute transport in fractured rocks. Understanding the flow field in fractured rock is necessary to trace the transport of concentration plume including disposal of hazardous waste. However, reactive transport study with the detailed geometry of fracture is limited. Discrete fracture network (DFN) shows advantageous capability in representation natural fracture system because of its ability to explicitly model the individual fractures, moreover it allows us to obtain the detailed flow pathway of subsurface groundwater movement in fractured rock mass. The study mainly presents the concept of a framework that can simulate reactive transport in porous fractured media. The new technique coupled particle tracking (PT) and chemical reaction model is developed to simulate Tetrachloroethylene (PCE) degradation and transport in 3D discrete fracture networks. FracMan was employed to generate a stochastic DFN using fracture orientation, fracture size, and fracture intensity; and then particle tracking is performed with a view to obtain flow traces. The extracted particle traces can provide 1D flow paths for PHREEQC code to model reactive transport in complex fractured rocks. The study first uses a simple fracture system with three single fractures to evaluate and test the workflow with the new coupling FracMan & PHREEQC and develop the new module. Secondary, complex fracture network system with four realistic fracture sets obtained at a selected site is then simulated to implement the framework in order to model the reaction and transport of PCE in 3D DFN and the last case is point source injection modeled with a view to demonstrates disposal of hazardous waste issue. The simulation results successfully show PCE reaction process along particle traces in both cases: simple fracture system and complex fracture system. Simple fracture network simulation shows good results for new technique of reactive transport model and also proves the work flow and the new module are correct. The results of complex fracture system simulation reflect the potential capability of this new model applying on complex situation which this new module can handle multi particles for PHREEQC simulation. Regarding disposal of hazardous waste phenomenon, the point source injection of contaminant simulation provides the understanding the fate of contaminant transport of subsurface flow with the specific geometry of fractures. For contaminant treatment problem, the new technique particle tracking – chemical reaction reflects a useful tool for fracture modeling and for predictions of flow and contaminant transport, furthermore, the safety time and distance also can be predicted for contamination treatment.

    ABSTRACT i CONTENTS iii LIST OF FIGURES v LIST OF TABLES vii LIST OF ABBREVIATIONS viii LIST OF SYMBOLS ix CHAPTER 1: INTRODUCTION 1 1.1 Background 1 1.2 Motivation and Objectives 6 1.3 Main tasks and thesis structure 7 CHAPTER 2: METHODOLOGY 10 2.1 Workflow 10 2.2 Stochastics discrete fracture network 12 2.2.1 Fracture orientation 13 2.2.2 Fracture intensity 15 2.2.3 Fracture size 17 2.3 Finite element solution for flow simulation and flow boundary conditions 18 2.4 Particle tracking 19 2.5 Advection – reaction – dispersion equation 21 2.6 Chemical kinetics 23 CHAPTER 3: SIMULATION SETUP. 26 3.1 Model setup and boundary conditions 26 3.1.1 Simple fracture network 26 3.1.2 Complex fracture network 27 3.2 PHREEQC reactive transport setting 29 CHAPTER 4: RESULTS AND DISCUSSION 32 4.1 Simple fracture system 32 4.2 Complex fracture system 37 4.3 Point source injection 43 CHAPTER 5: CONCLUSION AND SUGGESTIONS 48 REFERENCES 52

    Abdersson, J., Dverstorp, B., 1987. Conditional simulations of fluid flow in three-dimensional networks of discrete fractures, Water Resource Research 23 (10), 1876-1886.
    Anderson, J., and Deverstorp, B., 1987. Conditional Simulations of Fluid Flow in Three-Dimensional Networks of Discrete Fractures. Water Resources Research, 23, 10, 1876-1886.
    Baghbanan, A., Jing, L., 2007. Hydraulic properties of fractured rock masses with correlated fracture length and aperture. Int J Rock Mech Min Sci, 44(5): 704-719.
    Bear, J., 1972. Dynamics of fluids in porous media. American Elsevier Publishing Co., New York.
    Bear, J., Tsang, C. F., and De Marsily, G., 1993. Flow and contaminant transport in fractured rock. San Diego, California: Academic Press.
    Bedient, P. B, Rifai, H. S., Newell, C. J., 1999. Ground Water Contamination: Transport and Remediation, 2nd edition
    Berknowitz, B., Scher, H., 1998. Theory of anomalous chemical transport in random fracture networks. Phys. Rev. E 57, 5858.
    Bogdanov, I. I., Mourzenko, V. V., Thovert, J. F., Thovert, J. F., 2003. Effective permeability of fractured porous media in steady state flow. Water Resource Res, 39(1).
    Bouwer, E., Durant, N., Wilson, L., Zhang, W., Cunningham, A., 1994. Degradation of xenobiotic compounds in situ: Capabilities and limits. FEMS Microbiology Reviews, 15(2-3), 307 – 317.
    53
    Bradley, P. M., 2000. Microbial degradation of chloroethenes in groundwater systems. Hydrogeology Journal, 8(1), 104 – 111.
    Cadini, F., Bertoli, I., Sanctis, J. D., Zio, E., 2012. A novel particle tracking scheme for modeling contaminant transport in a dual-continua fractured medium. Water resources research, vol. 48, W10517, doi:10.1029/2011WR011694, 2012.
    Carrera, J., Heredia, J., Vomvoris, S., Hufschmied, P., 1990. Modeling of flow on a small fractured monzonitic gneiss block: Selected paper in Hydrogeology of Low Permeability Environments. Int. Assoc. Hydrogeologists Hydrogeol. 2, 115–167.
    Chiles, J.P., De Marsily, G., 1993. Chapter 4: Stochastic models of fracture system and their use in flow and transport modeling.
    Davison, C. C., 1985. URL Drawdown experiment and comparison with models. TR 375, Atomic Energy of Canada Ltd., Pinawa, Manitoba.
    Davy, P., Goc, R. L., Darcel, C., Bour, O., Dreuzy, J. R. D., Munier, R., 2010. Journal of geophysical research, vol. 115, B10411.
    Dershowitz, B., LaPointe, P., Eiben, T., Wei, L., 1998. Integration of discrete fracture network methods with conventional simulator approaches: Society of Petroleum Engineers Annual Technical Conference and Exhibition, New Orleans, Louisiana (September 27–30), SPE Paper 49069, 9 p.
    Dershowitz, W. S. and Herda, H. H. 1992. Interpretation of fracture spacing and intensity. In 33rd US Symposium on Rock Mechanics, Santa Fe, NM, pp. 757‐766.
    Dershowitz, W. S., 1984. Rock joint system. Dissertation, Massachusetts Institute of Technology.
    Dershowitz, W., and Miller, I., 1995. Dual porosity fracture flow and transport. Geophysical research letters, Vol. 22, no. 11, p1441 – 1444.
    54
    Dershowitz, W., Follin, S., Eiben, T., Andersson, J., 1999. SR 97-alternative models project: discrete fracture network modelling for performance assessment of Aberg, SKB Report R-99-43. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
    Devries, P. L. and Hasbun, J. E., 2011. A first course in computational physics. Second edition. Jones and Bartlett Publishers, p. 215.
    Diederik, J., Jirka, S. HP1 (HYDRUS-1D + PHREEQC): Additional HP1 Exercises. Waste and Disposal, SCK•CEN, Mol, Belgium, Department of Environmental Sciences, University of California, Riverside, USA.
    Erhel, J., De Dreuzy, J. R., Poirriez, B., 2009. Flow simulation in three-dimensional discrete fracture networks. SIAM J Sci Comput, 31(4): 2688-2705
    Fisher, N. I., 1996. Statistical Analysis of Circular Data. Cambridge University Press
    Golder Associates Inc, 2016. FracMan: Interactive Discrete Feature Data Analysis, Geometric Modeling and Exploration Simulation. Seattle, Washington, USA.
    Gonzalez-Garcia, R., Huseby, O., Thovert, J. F., et al., 2000. Three-dimensional characterization of a fractured granite and transport properties. J Geophys Res: Solid Earth, 105(B9): 21387-21401.
    Hadgu, T., Karra, S., Kalinina, E., Makedonska, N., Hyman, J. D., Klise, K., ... & Wang, Y., 2017. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. Journal of Hydrology, 553, 59-70.
    Hao, Y., Fu, P., Carrigan, C.R., 2013. Application of dual-continuum model for simulation of fluid flow and heat transfer in fractured geothermal reservoirs. In: Proceedings, 38-th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 11–13, 2013, SGP-TR-198.
    55
    Hartley, L., Joyce, S., 2013. Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site Sweden. J. Hydrol. 500, 200–216.
    Hass, P. E. and Weidemeier, T. H., 2004. Accelerated Bioremediation, A Training Course by National Groundwater Association, St. Paul, Minnesota, May 11-12, 2004.
    Henry, V., 2015. Applied Groundwater Modeling
    Herbert, A., Gale, G., Lanyon, G., and MacLeod, R., 1991. Modeling for the Stripa site characterization and validation drift inflow; prediction of flow through fractured rock. SKB Report 91-35, Swedish Nuclear Power and Waste Management Co., Stockholm.
    Hsieh, P.A., Neuman, S.P., Stiles, G.K., Simpson, E.S., 1985. Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media, 2, Methodology and application to fractured rocks. Water Resour. Res. 21 (11), 1667–1676.
    Huang, N., Jiang, Y., Li, B., Liu, R., 2016. A numerical method for simulating fluid flow through 3-D fracture networks. Journal of Natural Gas Science and Engineering xxx 1 – 11
    Hull, L. C., Miller, J. D., Clemo, T. M., 1987. Laboratory and simulation studies of solute transport in fracture networks. Water Resource Res, 23(8): 1505-1513.
    Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., Viswanathan, H. S., 2015. DFNWorks: A discrete fracture network framework for modeling subsurface flow and transport. Comput Geosci, 84: 10-19
    Irwin, R. J., 1997. Environmental Contaminants Encyclopedia, Entry for Tetrachloroethylene, National Park Service, CO, 1997.
    Isaaks, E. H., & Srivastava, R. M., 1989. Applied Geostatistics.
    56
    Ivanova, V. M., Sousa, R., Murrihy, B., Einstein, H. H., 2014. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems. Comput Geosci, 67: 100-109.
    Jackson, C.P., Hoch, A.R., Todman, S., 2000. Self-consistency of a heterogenous continuum porous medium representation of a fractured medium. Water Resour. Res. 36 (1), 189–202.
    Jing, L., 2003. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci; 40:283–353.
    Karra, S., Makedonska, N., Viswanathan, H.S., Painter, S.L., Hyman, J.D., 2015. Effect of advective flow in fractures and matrix diffusion on natural gas production. Water Resour. Res 51 (10), 8646–8657.
    Koivisto, M. M., Laine, E., 2012. MATLAB script for analyzing and visualizing scanline data. Computers & Geosciences 40 (2012) 185–193.
    Koudina, N., Garcia, R. G., Thovert, J. F., Adler, P. M., 1998. Permeability of three-dimensional fracture networks. Phys Rev E, 57(4): 4466.
    Lawrence, S. J., 2006. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water — A Review of Selected Literature. U.S. Geological Survey, Reston, Virginia.
    Lee, C. C., Lee, C. H., Yeh, H. F., Lin, H. I., 2011. Modeling spatial fracture intensity as a control on flow in fractured rock. Environ Earth Sci 63:1199–1211.
    Lei, Q., Latham, J.P, Tsang, C.F., 2017. Review: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics 85 (2017) 151–176
    57
    Lichtner, P., Hammond, G., Lu, C., Karra, S., Bisht, S., Andre, B., Mills, R., Kumar, J., 2015. PFLOTRAN user manual: a massively parallel reactive flow and transport model for describing surface and subsurface processes, Technical report LA-UR-15-20403. Los Alamos Natl. Lab, Los Alamos, N. M.
    Lipson, D. S., McCray, J. E., and Thyne, G. D., 2007. Using PHREEQC to simulate solute transport in fractured bedrock. Ground water Vol.45, no.4, 468-472.
    Liu, R., Li, B., Jiang, Y., 2016. Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections. Adv Water Resour, 88: 53-65.
    Long, J. C. S., Aydin, A., Brown, S. R., Einstein, H. H., Hestir, K., Hsieh, P. A., ... & Paillet, F. L., 1996. Rock fractures and fluid flow: contemporary understanding and applications.Committee on Fracture Characterization and Fluid Flow, National Academy Press, Washington, DC.
    Long, J. C. S., Remer, J. S., Wilson, C. R., Witherspoon, P. A., 1982. Porous media equivalents for networks of discontinuous fractures. Water resources research, vol. 18, no. 3, p 645-658.
    Makedonska, N., Painter, S. L., Bui, Q. M., Gable, C. W., & Karra, S., 2015. Particle tracking approach for transport in three-dimensional discrete fracture networks. Computational Geosciences, 19(5), 1123-1137.
    Mardia, K. V., 1972. Statistics of Directional Data. 1st Edition. Academic Press
    Maymo-Gatell, X., Chien, Y., Gossett, J. M., Zinder, S. H., 1997. Isolation of a Bacterium That Reductively Dechlorinates Tetrachloroethene to Ethene. Science, 276 (5318), 1568-1571.
    McCarty, P. L., Semprini, L., 1994. Ground – water treatment for chlorimated solvents.
    58
    Miller, I., Lee, G., Derchowitz, W., 2001. User documentation MAFIC: matrix/fracture hydraulic interaction code with solute transport.
    Miller, I., Lee, G., Dershowitz, W., 2001. MAFIC Matrix/Fracture Interaction Code with heat and solute transport user documentation
    Min, K. B., Jing, L., Stephansson, O., 2004. Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK. Hydrogeol J, 12(5): 497-510.
    Mohebbi, M., Yarahmadi B. A. R., Fatehi, M. M., Gholamnejad, J., 2016. Rock mass structural data analysis using image processing techniques (Case study: Choghart iron ore mine northern slopes). Journal of Mining & Environment.
    Neuman, A. P., and Depner, J. S., 1988. Use of variable scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona. Journal of Hydrology, 102(1-4):475-501.
    Neuman, S.P., 2005. Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 13, 124–147
    Niven, E. B. and Deutsch, C. V. 2010. Relating different measures of fracture intensity. Paper 103, CCG Annual Report 12.
    Noetinger, B., 2015. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow. Journal of Computational Physics, 283: 205-223.
    Odling, N. E., 1997. Scaling and connectivity of joint system in sandstones from western Norway. Journal of Structural Geology. Volume 19, Issue 10, October 1997, Pages 1257-1271.
    59
    Painter, S., Cvetkovic, V., 2005. Upscaling discrete fracture network simulations: an alternative to continuum transport models. Water Resour. Res. 10.1029-2004WR003682. 41, W02002.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 1992, Numerical Recipes in C--The Art of Scientific Computing, second edition: Cambridge University Press, 994 p.
    Priest, S.D., Hudson, J.A., 1981. Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 18, 183–197.
    Robinson, P. C., 1984. Connectivity, flow and transport in network models of fractured media. Doctor thesis of Philosophy at Oxford University.
    Santharam, S., Ibbini, J., Davis, L. C., Erickson, L. E., 2004. Biodegradation of Tetrachlotoethylene (PCE) in Soil and Groundwater. Proceedings of the 33rd Annual Biochemical Engineering Symposium.
    Smith, L., and Schwartz, F. W., 1984. An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resources, Res.,20(9), 1241-1252.
    Sucdicky, E. A., and McLaren, R. G., 1992. The Laplace transform Galerkin technique for the large scale simulation of mass transport in discretely fractured porous formation. Water Resources Research, 28(2):499-514.
    Teutsch, G., Sauter, M., 1991. Groundwater flow and transport processes in karst aquifers—scale effects, data provision and model validation. In: EPA/NWWA international symposium on environmental problems in Karst Terrains, Nashville
    Tsang, Y. W., Tsang, C. F., 2001. A particle-tracking method for advective transport in fractures with diffusion into finite matrix blocks. Water resources research, vol. 37, no. 3, pages 831-835.
    60
    Tsang, Y.W., Tsang, C.F., Hale, F.V., Dverstop, B., 1996. Tracer transport in a stochastic continuum model of fractured media. Water Resour. Res. 32, 3077– 3092.
    U.S. Environmental Protection Agency (USEPA) Office of Solid Waste and Emergency Response,2001. The State-of-the Practice of Characterization and Remediation of Contaminated Ground Water at Fractured Rock Sites (EPA 542-R-01-010)
    Uchida, M., Doe, T., Dershowitz, W., Thomas, A., Wallmann, P., Sawada, A., 1994. Discrete-fracture modeling of the Aspo LPT-2, large-scale pumping and tracer test, SKB International Cooperation report ICR 94–09. Swedish Nuclear Fuel and waste Management Co., Stockholm, Sweden.
    USGS 1999. User’s guide to PHREEQC (version 2)— a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculation.
    Vitolins, A. R., Goldstein, K. J., Navon, D., Anderson, G. A., Wood, S. P., Parker, B., & Cherry, J. Technical and Regulatory Challenges Resulting from Voc Matrix Diffusion in a Fractured Shale Bedrock Aquifer.
    Xu, T., and Pruess, K., 2001. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. methodology. American Journal of Science 301, no. 1: 16-33.
    Yanenko, N., 1971, The method of fractional steps: Springer, New York.
    Yu, Q., Tanaka, M. and Ohnishi, Y., 1999. An inverse method for the model of water flow in discrete fracture network. Proc. of 34th Japan National Conf. on Geotechnical Engineering, Tokyo. pp. 1303–1304
    Zhao, Z., Jing, L., Neretnieks, I., Moreno, L., 2011. Numerical modeling of stress effects on solute transport in fractured rocks. Comput Geotech, 38(2): 113-126.
    61
    Zimmerman, R. W. and Bodvarsson, G. S., 1996. Effective transmissivity of two-dimensional fracture networks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 33(4):433–436

    QR CODE
    :::