| 研究生: |
謝文憲 Wen-Hsien Hsieh |
|---|---|
| 論文名稱: |
強健系統的穩定度分析與控制器設計 Stability Analysis and Controller Design for Robust Systems |
| 指導教授: | 莊堯棠 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 強健系統 |
| 外文關鍵詞: | Robust |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係研究系統之穩定性分析及穩定化控制設計,研究的範疇包含連續時間與離散時間兩大系統,系統中含有區間不確定量因子,是本文的主要探討。針對穩定性分析問題,而推導出新的條件,基於此條件,搭配狀態迴授來設計控制器,運用線性規劃方法來尋找控制器參數,便可應用於控制系統的穩定度設計上。最後以實際的系統為例,對此系統設計控制器,討論補償前與補償後系統性能的差異,經由模擬結果顯示,所設計的控制器是有效且容易的。
This thesis is concerned with stability and stabilization of interval systems Both continuous-time and discrete-time are discussed. For stability analysis and stabilization problems of those systems, we derive some new conditions. Then based on these conditions, a linear programming method is applied to design controllers. Several examples, including compartmental systems and Leslie systems are given to demonstrate the effectiveness and applicability of the proposed methods.
[1] A. Berman, M. Neumann, and R. J. Stern, Nonnegative Matrices in Dynamic Systems, New York: Wiley, 1989.
[2] L. Farina and S. Rinaldi, Positive Linear System: Theory and Application, New York: Wiley, 2000.
[3] T. Kaczorek, 1-D and 2-D Systems, Berlin: Springer-Verlag, 2002.
[4] D. G. Luenberger, Introduction to Dynamic Systems, New York: Wiley, 1979.
[5] H. Minc, Nonnegative Matrices, New York: Wiley, 1987.
[6] P. H. Leslie, “On the use of matrices in certain population mathematics,” Biomerriko, vol. 33, pp. 183-212, 1945.
[7] P. D. Berk, J. R. Bloomer, and R. B. Howe, “Constitutional hepatic dysfunction (Gilbert’s syndrome),” The American Journal of Medicine, vol49, no. 3, pp.296-305, 1970.
[8] J. A. Jacquez, Compartmental Analysis in Biology and Medicine, Ann Arbor, MI: Univ. Michigan Press, 1985.
[9] H. Caswell, Matrix Population Model: Construction, Analysis and Interpretation, Sunderland, MA: Sinauer Assoc., 2001.
[10] L. Benvenuti and L. Farina, “Positive and compartmental systems,” IEEE Transactions on Automatic Control, vol.47, no.2, pp. 370-373, 2002.
[11] H. K. Khalil, Nonlinear Systems, third ed., Upper Saddle River, NJ: Prentice-Hall, Inc., 2002.
[12] M. Vidyasagar, Nonlinear Systems Analysis, New Jersey: Prentice-Hall, Inc., 2000.
[13] J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.
[14] T. Kaczorek, “Stabilization of positive linear systems,” Proceedings of the 37th IEEE Conference on Decision and Control, pp. 620-621, 1998.
[15] T. Kaczorek, “Stabilization of positive linear system by state-feedback,” Pomiary, Automatyka, Kontrola, vol. 3, pp. 2-5, 1999.
[16] P. D. Leenheer and D. Aeyels, “Stabilization of positive linear system,” Systems & Control Letters, vol. 44, no.4, pp. 259-271, 2001.
[17] H. Gao, J. Lam, C. Wang, and S. Xu, “Control for stability and positivity: Equivalent conditions and computation,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 52, no. 9, pp. 540-544, Sep. 2005.
[18] M. A. Rami and F. Tadeo, “Controller synthesis for positive linear systems with bounded controls,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 54, no. 2, pp. 151-155, 2007.
[19] B. Roszak and E. J. Davison, “Necessary and sufficient conditions for stabilizability of positive LTI systems,” Systems & Control Letters, vol. 58, pp. 474-481, 2009.
[20] Z. Shu, J. Lam, H. Gao, B. Du, and L. Wu, “Positive observers and dynamic output-feedback controllers for interval positive linear systems,” IEEE Transactions on Circuits and Systems Ⅰ, vol. 55, no. 10, pp. 3209-3222, Nov. 2008.
[21] P. Ling, J. Lam, and Z. Shu, “Positive observers for Positive interval linear discrete-time delay systems,” Proceedings of 48th IEEE Conference on Decision Control, pp. 6107-6112, Shanghai, P.R., China, 2009.
[22] X. Liu, “Stability analysis of switched positive systems: A switched linear copositive lyapunov function method,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 56, no. 5, pp. 414-418, 2009.
[23] O. Mason and R. Shorten, “Some results on the stability of positive switched linear systems,” Proceedings of 43rd Conference on Decision and Control, 2004, pp. 4601-4606.
[24] O. Mason and R. Shorten, “The geometry of convex cones associated with the Lyapunov inequality and the common Lyapunov function problem,” Electronic Journal of Linear Algebra, vol. 12, pp. 42-63, 2005.
[25] O. Mason and R. Shorten, “Quadratic and copositive Lyapunov functions and the stability of positive switched linear systems,” Proceedings of 2007 American Control Conference, pp. 657-662, 2007.
[26] O. Mason and R. Shorten, “On linear copositive Lyapunov functions and the stability of switched positive linear systems,” IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1346-1349, 2007.
[27] F. Knorn, O. Mason, and R. Shorten, “On Linear Co-positive Lyapunov Functions for Sets of Linear Positive Systems,” Automatica, vol. 45, no. 8, pp. 1943-1947, 2009.
[28] M. A. Rami, F. Tadeo, and A. Benzaouia, “Control of constrained positive discrete systems,” Proceedings of 2007 American Control Conference, pp. 5851-5856, New York, USA, 2007.
[29] M. A. Rami, and F. Tadeo, “Positive observation problem for linear discrete positive systems,” Proceedings of 45th IEEE Conference on Decision and Control, pp. 4729-4733, Athens, Greece, 2007.
[30] X. Liu, L. Wang, W. Yu, and S. Zhong, “Constrained control of positive discrete-time systems with delays,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 55, no. 2, pp. 193-197, 2008.
[31] X. Liu, “Constrained control of positive systems with delays,” IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1596-1600, 2009.
[32] M. A. Rami, F. Tadeo, and A. Benzaouia, “Control of constrained positive discrete systems,” Proceeding of 2007 American Control Conference, pp. 5851-5856, New York, USA, 2007.
[33] M. A. Rami, and F. Tadeo, “Positive observation problem for linear discrete positive systems,” Proceeding of 45th IEEE Conference on Decision and Control, pp. 4729-4733, Athens, Greece, 2007.
[34] L. Caccetta, L. R. Foulds, and V. G. Rumchev, “A positive linear discrete-time model of capacity planning and its controllability properties,” Mathematical and Computer Modelling, vol. 40, no. 1-2, pp. 217-226, 2004.
[35] M. Busłowicz and T. Kaczorek, “Robust stability of positive discrete-time interval systems with time-delays,” Bulletin of The Polish Academy of Sciences: Technical Sciences, vol.52, no.2, 2004.
[36] N. Dautrebande and G. Bastin, “Positive linear observers for positive linear systems,” Proceeding of 1999 Europe Control Conference, 1999.
[37] L. Benvenuti and L. Farina, “Eigenvalue regions for positive systems,” Systems & Control Letters, vol. 51, pp. 325-330, 2004.
[38] J. Back and A. Astolfi, “Positive linear observers for positive linear systems: A Sylvester equation approach,” Proceeding of 2006 American Control Conference, pp. 4037-4042, Minneapolis, Minnesota, USA, 2006.
[39] J. Feng, J. Lam, P. Li, and Z. Shu, “Decay rate constrained stabilization of positive systems using static output feedback,” International Journal of Robust and Nonlinear Control, vol. 83, no. 3, pp. 575-584, 2010.
[40] T. Coleman, M. Branch, and A. Grace, Optimization Toolbox for Use with Matlab, Natick, MA: The Math Works Inc., 1999.
[41] Yan Li; Peng Zhang; Lingyu Ren; Taofeek Orekan,” A Geršgorin theory for robust microgrid stability analysis,” 2016 IEEE Power and Energy Society General Meeting (PESGM).
[42] Paul F. Curran,” On a variation of the Gershgorin circle theorem with applications to stability theory,” IET Irish Signals and Systems Conference (ISSC 2009).