跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴佳偉
Jian-Wei Lai
論文名稱: 時延擾動系統分析及設計
指導教授: 莊堯棠
Yau-Tarng Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 48
中文關鍵詞: 控制系統擾動時延
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 擾動的來源主要是由於下述幾種原因:系統的非線性關係,為了簡單起見而簡化原來較複雜的系統所帶來的誤差問題、系統參數的變動、周遭客觀環境的改變、不可避免的資料誤差等等都是可能的擾動原因。
    除了擾動問題外,另一種可能使系統的穩定性降低的就是時間延遲的存在。時間延遲不僅發生在物理、工程或化學等方面的系統,同時也可能出現在政治或經濟方面等之系統。因為由於時間延遲的出現改變了系統的特性方程式,因此要解決上述系統由於時間延遲的介入也就變得非常複雜了。
    因此,如通訊系統、化工程序、電力系統、運輸系統等,皆是擾動時延系統的例子。本文主要針對一個線性相依的擾動時延系統做穩定性的評估與探討,主要分成兩方面內容如下:
    (1) 非結構化擾動時延系統
    (2) 結構化擾動時延系統
    本文在擾動時延系統穩定度分析中,主要採用Lyapunov Stability Theorem, Matrix Measure Function 及 Kharitonov Theorem等方法來改進先前對非結構化及結構化擾動時延系統的穩定性分析及探討,並對時延擾動系統作迴授控制器設計,使我們對此系統能更確認系統的穩定度。
    本論文的研究主要就是對上述的狀況作一較完整的分析與設計。我們期望能夠得到一個較佳的穩定準則及較精確的條件,並設計控制器增加系統的穩定度。


    In this thesis, we deal with the time-delay system with uncertainty. We comment on the previous papers [5], [9] and modify the results. Besides, we present better criteria which are proven to be less conservative than previous results in the literatures. Besides, we present other stability criteria which can deal with different systems. The feedback controller can be designed by optimal method. Kharitonov theorem and edge theorem can help us to reduce the calculation. As a result, we obtained the allowable delay time for the system with unstructured and highly structured uncertainty and designed a feedback controller to further ensure its stability

    摘要 ………………………………………………………Ⅰ 目錄 ………………………………………………………Ⅲ 第一章 緒論 ……………………………………………Ⅳ 第二章 非結構化擾動時延系統之穩定性分析 ………Ⅴ 第三章 結構化擾動時延系統之穩定性分析 …………Ⅵ 第四章 時延擾動系統迴授控制器設計 ………………Ⅶ 第五章 結論 ……………………………………………Ⅷ CONTENTS CHAPTER 1 Introduction 1 1.1 Motivation ……………………………………………..……………………..1 1.2 Literature Survey ………………………………………..……………………1 1.3 Organization of this thesis ………………………………..…………………..2 CHAPTER 2 Robust stability criteria for the linear time-delay systems with unstructured uncertainties 4 2.1 Introduction …………………………………………………………………..4 2.2 Problem Formulation …………………………………………………………4 2.3 Comment on previous stability criteria ………………………………………5 2.4 Other stability criteria for linear uncertain systems with unstructured uncertainty ……………………………………………………………………8 2.5 Conclusions …………………………………………………………………12 CHAPTER 3 Robust stability criteria for the linear time-delay systems with highly structured uncertainties 13 3.1 Introduction …………………………………………………………………13 3.2 Problem Formulation ……………………………………………………….13 3.3 An improved stability criterion for linear time-delay systems with highly structured uncertainties ……………………………………………………..14 3.4 Other stability criteria for interval time-delay systems with highly structured uncertainties …………………………………………………………………18 3.5 Examples ……………………………………………………………………24 3.6 Conclusions …………………………………………………………………26 CHAPTER 4 Design of feedback controller with uncertainty and time delay 27 1.1 Introduction …………………………………………………………………27 1.2 Problem Formulation ………………………………………………………..27 1.3 Examples ……………………………………………………………………28 1.4 Conclusions …………………………………………………………………33 CHAPTER 5 Conclusions 42

    [1] A. Hmamed, Further results on the robust stability of uncertain time delay systems, Internat. J. Systems Sci., vol. 22(1991) 605-614.
    [2] Y. T. Juang, Robust Stability and Robust Pole Assignment of Linear Systems with
    Structured Uncertainty, IEEE Trans. Automat. Control, vol. 38, no. 11 (1993) 1697-1700.
    [3] V. B. Kolmanovskii, V.R. Nosov, Stability of Function Differential Equation, Academic Press, London, 1986.
    [4] V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, Academic Press, New York, 1969.
    [5] P. L. Liu, Te-Jen Su, Robust stability of interval time-delay systems with delay- dependence, Systems & Control Letters, vol. 33 (1998) 231-239.
    [6] T. Mori and H. Kokame, Stability of , IEEE Trans. Automat. Control, vol. 34, no. 4(1989) 460-462.
    [7] S. S. Wang, B. S. Chen, and T. P. Lin, Robust stability of uncertain time-delay systems, Int. J. Contr., vol. 46, no.3 (1987) 963-976.
    [8] R. K. Yedavalli, Improved measures of stability robustness for linear state space models, IEEE. Trans. Automat. Control, vol. 30 (1985) 577-579.
    [9] T. J. Su and C. G. Huang, Robust Stability of Delay Dependence for Linear Uncertain Systems, IEEE. Trans. Automat. Control, vol.37, no. 10 (1992) 1656-1659.
    [10] S. P. Bhattacharyya, H. Charpellat, L. H. Keel, Robust Control, 1995.
    [11] T. J. Su, T. S. Kuo, Y. Y. Sun, Robust stability for linear time-delay systems with
    linear parameter perturbations, Internat. J. Systems Sci., vol. 19 (1988) 2123-2129.
    [12] C. H. Lee, Simple Stability Criteria and Memoryless State Feedback Control Design for Time-Delay Systems with Time-Varying Perturbations, IEEE. Trans. Automat. Control, vol. 45, no. 11 (1998) 1211-1215.
    [13] Y. T. Juang, Robust Stability and Robust Pole Assignment of Linear Systems with Structured Uncertainty, IEEE Trans. Automat. Control, vol. 36, no. 5 (1991) 635-637.
    [14] G. Meinsma, M. Fu, T. Iwasaki, Robustness of the stability of feedback systems with respect to small time delays, Systems & Control Letters, vol. 36 (1999) 131-134.
    [15] C. H. Lee and F. C. Kung, New results for the stability of uncertain time-delay systems, Internat. J. Systems Sci., vol. 26 (1995) 999-1004.
    [16] X. Li and C. E. de Souza, Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach, IEEE Trans. Automat. Control, vol. 42, no. 8 (1997) 1144-1148.
    [17] Y. J. Sun, J. G. Hsieh, H. C. Yang, On the stability of uncertain systems with multiple time-varying delays, IEEE Trans. Automat. Control, vol. 42, no. 1 (1997) 101-105.
    [18] L. Xie and Y. C. Soh, Robust control of linear systems generalized positive real uncertainty, Automatica, vol. 33, no. 5 (1997) 963-967.
    [19] E. Cheres, Z. J. Palmor, S. Gutman, Quantitative measures of robustness for systems including delayed perturbations, IEEE Trans. Automat. Control, vol. 34, no. 6 (1989) 1203-1204.
    [20] J. K. Hale and S. M. V. Lunel, Introduction to functional differential equations, New York, 1993.
    [21] E. B. Lee, W. S. Lu, N. E. Wu, A Lyapunov theory for linear time-delay systems, IEEE Trans. Automat. Control, vol. 31, no. 3 (1986) 259-261.
    [22] T. Mori, Criteria for asymptotic stability of linear time-delay systems, IEEE Trans. Automat. Control, vol. 30, no. 1 (1985) 158-161.
    [23] H. Wu and K. Mizukami, Exponential stabilization of a class of uncertain dynamic systems with time delay, Control-Theory and Advanced Technology, vol. 41 (1996) 116-121.
    [24] B.Xu, Comments on Robust stability of delay dependent for linear uncertain systems, IEEE Trans. Automat. Control, vol. 39, no. 8 (1994) 2365.
    [25] J. S. Luo, A. Johnson, and P. J. van den Bosch, Delay-independent robust stability of uncertain linear systems, Systems & Control Letters, vol. 24 (1995) 33-39.
    [26] H. Kokame, and T. Mori, A Kharitonov-like theorem for interval polynomial matrices, Systems & Control Letters, vol. 16 (1991) 107-116.
    [27] M. Fu, A. W. Olbrot, and M. P. Polis, The edge theorem and graphical tests for robust stability of neutral time-delay systems, Automatica, vol. 27, no. 4 (1991) 739-741.
    [28] V. L. Kharitonov and A. P. Zhabko, Robust stability of time-delay systems, IEEE Trans. Automat. Control, vol. 39, no. 12 (1994) 2388-2397.
    [29] J. Kogan, and A. Leizarowitz, Frequency domain criterion for robust stability of interval time-delay systems, Automatica, vol. 31, no. 3 (1995) 463-469.
    [30] P. G. Park, A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Trans. Automat. Control, vol. 44, no. 4 (1999) 876-877.
    [31] J. H. Su, Further results on the robust stability of linear systems with a single time delay, Systems & Control Letters, vol. 23 (1994) 375-379.
    [32] J. H. Su, I. K. Fong, and C. L. Tseng, Stability analysis of linear systems with time delay, IEEE Trans. Automat. Control, vol. 39, no. 4 (1994) 1341-1344.
    [33] G. M. Schoen and H. P. Geering, Stability condition for a delay differential system, Int. J. Contr., vol. 58 (1993) 247-252.
    [34] K. G. Shin and X. Cui, Computing time delay and its effects on real-time control systems, IEEE Transaction on Control Systems Technology, vol. 3 (1995) 218-224.
    [35] J. T. Tsay, P. L. Liu, and T. J. Su, Robust stability for perturbed large-scale time-delay systems, IEEE Proc. Control Theory Appl., vol. 143, no. 3 (1996) 233-236.
    [36] B. Xu, On delay-independent stability of large-scale systems with time delays, IEEE Trans. Automat. Control, vol. 40, no. 5 (1995) 930-933.
    [37] F. C. Kung, C. H. Lee and T. H. Li, Decentralized robust control design for large-scale time-delay systems with time-varying uncertainties, JSME International Journal, vol. 39, no. 3 (1996) 243-247.
    [38] C. H. Lee, T. H. Li and F. C. kung, Instability analysis and unstable roots region estimate of time-delay systems with highly structured uncertainties, Transactions of the ASME, vol. 22 (1996) 225-233.
    [39] M. Xuerong, K. Natalia, R. Alexandra, Robust stability of uncertain stochastic differential delay equations, Systems & Control Letters, vol. 35, no. 5 (1998) 325-336.
    [40] 林俊良,強健控制系統分析與設計,國立編譯館,1997.

    QR CODE
    :::