跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾冠逞
Guan-Cheng Zeng
論文名稱: Hardy-Hilbert型式的不等式和Cauchy加法映射的穩定性
On Hardy-Hilbert Type Inequalities and Stability of Cauchy Additive Mappings
指導教授: 林欽誠
Chin-cheng Lin
蕭勝彥
Sen-Yen Shaw
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 96
語文別: 中文
論文頁數: 49
中文關鍵詞: 近乎線性映射穩定性Holder''s 不等式Hardy-Hilbert 型式的不等式Norm積分算子
外文關鍵詞: Approximately linear mapping, stability, Holder''s inequality, inequality of Hardy-Hilbert type, integral operator, Norm
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文研究兩個主題:Hardy-Hilbert型式的積分不等式和Cauchy加法映射的穩定性。 下列是主要結果:1) 將B. Yang對某種有界的自伴積分算子T : L2 (0,∞) → L2 (0,∞) 的範數及其應用到Hardy -Hilbert型式的不等式的結果, 從 L2 (0,∞)空間推廣到Lp (0,∞) 空間 (p > 1) ; 2) 推廣Rassias關於Cauchy加法映射的穩定性定理; 3) 給予Park等人[6]的定理的一個正確的證明; 4) 以一個唯一的群的同態變換 (或環的同態變換) 去逼近一個特定的向量映射的奇部分。


    This thesis is concerned with two subjects of research; Hardy-Hilbert type inequalities and the stability of Cauchy additive mappings. The following are done : 1) to extend B. Yang''s result on the norm of a bounded self- adjoint integral operator T : L2 (0,∞) → L2 (0,∞) and its applications to Hardy-Hilbert type integral inequalities from the space L2 (0,∞) to the space Lp (0,∞) with p > 1 ; 2) to generalize Rassias''s theorem on the stability of Cauchy additive mappings ; 3) to give a correct proof of Park et al''s theorem in [6]; 4) to approximate the odd part of a certain vector mapping by a unique group homomorphism and ring homomorphism, respectively.

    Abstract..................................................................................................................................1 1. Introduction........................................................................................................................2 Part I 2. Norms of Some Integral Operators and Applications to Hardy- Hilbert Type Inequalities...........................................................................................................................11 2.1 General results................................................................................................................11 2.2 Applications to some examples of operators..................................................................15 Part II 3. Stability of Cauchy Additive Mappings...........................................................................26 References............................................................................................................................42

    [1] R. Badora, On approximate ring homomorphism, J. Math. Anal. Appl., 276 (2002),589-597.
    [2] Z. Gajda, On stability of additive mappings, Internat. J. Math. & Math. Sci., 14(1991), 431-434.
    [3] G. H. Hardy , J. E. Littlewood and G. Polya, Inequalities, Cambridge UniversityPress , Cambridge, 1952.
    [4] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
    [5] Y. Li, Z. Wang, and B. He, Hilbert’s type linear operator and some extensions of Hilbert’s inequality, J. Inequal. Appl. Vol. 2007 (2007), Article ID 82138, 10 pages.
    [6] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-Von Neumann type additive functional equations, J. Inequal. Appl. (2007), to appear.
    [7] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
    [8] T. M. Rassias, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989-993.
    [9] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.
    [10] Z. Wang, D. Gua., An introduction to special functions, Science Press, Bejing, 1979.
    [11] B. Yang, On the norm of a self-adjoint operator and applications to the Hilbert’s type inequalities, Bulletin of the Belgian Mathematical Society, 13 (2006), 577-584.
    [12] B. Yang, On the norm of a certain self-adjoint integral operator and applications to bilinear integral inequalities, Taiwanese J. Math., to apprar.
    [13] D. H. Zhang and H. X. Cao, Stability of functional equations in several variables, Acta Math. Sinica. (Engl. Ser.) 23 (2007), 321-326.
    42

    QR CODE
    :::