跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余允辰
Yun-Chen Yu
論文名稱: 台灣西北部麓山帶沉積岩的孔隙率-滲透率曲線與微觀構造
Permeability-Porosity relationship and Microstructure of Sedimentary Rocks in Northwest Taiwan
指導教授: 董家鈞
Jia-Jyun Dong
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 99
語文別: 中文
論文頁數: 180
中文關鍵詞: 微觀構造滲透率孔隙率沉積岩二氧化碳地質封存
外文關鍵詞: microstructure, permeability, porosity, sedimentary rocks, CO2 injection
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 岩石的孔隙率與滲透率影響地下流體在地層中的富集與移棲,因此,對於現今發展中的二氧化碳地質封存,孔隙率與滲透率為相關評估與分析時重要的關鍵參數。岩石的孔隙率大致上隨深度增加而減少,即孔隙率受有效應力影響;而影響岩石滲透率之因素除了有效應力之外,亦包括孔隙的尺寸、形狀與連通性。此外,應力歷史對孔隙率與滲透率也有明顯之影響。為瞭解二氧化碳目標地層的孔隙率-滲透率與微觀構造間關係,本研究透過室內孔隙率、滲透率量測,並配合光學顯微鏡以及掃描式電子顯微鏡,針對岩石的礦物組成與孔隙型態進行測量與描述,並嘗試量化微觀構造對孔隙率-滲透率之影響。根據試驗結果,台灣西北部上新世以及晚中新世沉積岩之孔隙率與滲透率關係式符合冪次律並且反映應力歷史之影響,同時,兩者間關係受岩性、顆粒大小與巨觀孔隙率控制。未來若能取得地層孔隙率井測資料,配合本研究建議之力學壓密作用下孔隙率與滲透率關係式推估滲透率,即可合理評估不同岩性、不同深度地層之滲透率。


    The porosity and permeability of rocks influence the storage and migration of the underground fluid in formations. Owing to the developing technology of carbon dioxide, the two parameters are very important for estimating and analyzing. The porosity of rocks changes to the burial depth .In other worlds, the effective stress control the porosity. In addition, not only the effective stress but also the size, shape and connection influence the permeability of rocks. Besides, the stress history also affects the porosity and permeability. To understand the porosity-permeability relationships and the microstructures of carbon dioxide storage information. This study using porosity/permeability measurement system, optical microscope and scanning electron microscope(SEM) to measure and describe the mineral combination and pore shapes. Also, trying to quantify the misconstrues and the influence of microstructures to porosity-permeability relationships The experimental results indicate that the fit of the model to the data points of from sedimentary rock of the west-part of the western offshore of Taiwan(Pliocene and Miocene) can improve by using a power law. Also, the relationship controls by bock type and pore size. In the future, it is useful to combining the logging data of porosity with the porosity-permeability relationship to estimate the permeability of different rock type and depth.

    摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 xii 一、緒論 1 1.1 研究動機與目的 1 1.2 研究流程 3 1.3 內文概述 5 二、文獻回顧 6 2.1 二氧化碳地質封存 6 2.2 沉積岩孔隙率與深度關係 9 2.3 岩石孔隙率、滲透率與有效應力/應力歷史相依模式 12 2.3.1 岩石孔隙率與有效應力 12 2.3.2 岩石滲透率與有效應力 13 2.3.3 應力歷史對岩石孔隙率/滲透率之影響 14 2.4 孔隙率與滲透率關係 16 2.5 砂岩微觀構造與孔隙率、滲透率關係 18 三、研究方法 20 3.1 實驗試體 20 3.1.1 試體來源 20 3.1.2 孔隙率/滲透率試體選取與製作 27 3.2 孔隙率與滲透率的量測 29 3.2.1 滲透率的量測 30 3.2.2 孔隙率的量測 31 3.3 應力歷史相依孔隙率模型 35 3.4由地質剖面評估最大預壓密應力 37 3.5應力歷史相依滲透率模型 40 3.6 克林堡效應修正 42 3.7 孔隙率與滲透率關係 44 3.8 砂岩微觀構造 45 3.8.1 顆粒粒徑分佈與比重試驗 45 3.8.2 偏光顯微鏡 46 3.8.3 掃描式電子顯微鏡 47 四、結果與討論 53 4.1 孔隙率與滲透率量測結果 53 4.1.1 隨有效圍壓變化之孔隙率 53 4.1.2 隨有效圍壓變化之滲透率 56 4.2 決定最大預壓密應力之方法 59 4.2.1 根據孔隙率實驗所得之最大預壓密應力 59 4.2.2 根據滲透率實驗所得之最大預壓密應力 62 4.2.3 根據地質剖面所得之最大預壓密應力 65 4.3 考慮應力歷史之孔隙率加壓、解壓模型建立 70 4.4 經克林堡效應修正與考慮應力歷史之滲透率加壓、解壓模型建立 72 4.4.1 克林堡效應修正 72 4.4.2 考慮應力歷史之滲透率加壓、解壓模型建立 74 4.5 孔隙率與滲透率關係 76 4.6 砂岩試體顆粒特性分析 84 4.7 砂岩孔隙部分微觀構造 100 五、結論 113 參考文獻 115 附錄 125

    [1] IPCC, IPCC special report on carbon dioxide capture and storage, Final Draft, IPCC Working Group III on Mitigation of Climate Change, 2005.
    [2] Baines, S. J., Worden, R. H., “Geological storage of carbon dioxide”, Geological society, London, Special Publications, Vol. 233, pp. 1-6, 2004.
    [3] Holloway, S., Savage, D., “The potential for aquifer disposal of carbon dioxide in the UK”, Energy Conversion and Management, Vol. 34, pp. 925-932, 1993.
    [4] Bachu, S., “Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change”, Environmental Geology, Vol. 44, No. 3, pp. 277-289, 2003.
    [5] Lin, C. K., “Algorithm for determining optimum sequestration depth of CO2 trapped by residual gas and solubility trapping mechanisms in a deep saline formation”, Geofluids, Vol. 8, pp. 333-343, 2008.
    [6] APEC, Assessment of geological storage potential of carbon dioxide in the APEC region-Phase 1: CO2 storage prospectivity of selected sedimentary basins in the region in the China and south east Asia, 2005.
    [7] 陳文山、李奕亨,「台灣西部平原之二氧化碳地質封存環境評估」,2009年淨煤及二氧化碳捕獲與封存技術研討會,台北,2009年12月。
    [8] 工研院,「二氧化碳再利用技術及地質封存潛能評估計畫」,經濟部能源科技研究發展計畫九十八年度執行報告,工業技術研究院,共489頁,2009。
    [9] Lin, A. T., Watts, A. B., Hesselbo, S. P., “Cenozoic stratiggraphy and subsidence history of the South China Sea margin in the Taiwan region”, Basin Research, Vol. 15, pp. 453-478, 2003.
    [10]楊健男,「二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例」,國立中央大學,碩士論文,2010。
    [11]Mondol, N. H., Bjørlykke, K., Jahren, J., Høeg, K., “Experimental mechanical compaction of clay mineral aggregates – Changes in physical properties of mudstones during burial”, Marine and Petroleum Geology, Vol. 24, pp. 289-311, 2007.
    [12]Terzaghi, K., “Principles of soil mechanics: I – phenomena of cohesion of clays. IV – settlement and consolidation of clay”, Engineering News – Record, Vol. 95, No. 19, pp. 742-746 & pp. 874-878, 1925.
    [13]Jones, M. E., Addis M. A., “On changes in porosity and volume during burial of argillaceous sediments”, Marine and Petroleum Geology, Vol. 2, pp. 247-253, 1985.
    [14]Goulty, N. R., “Relationships between porosity and effective stress in shales”, First Break, Vol. 16, No. 12, pp. 413-419, 1998.
    [15]Marcussen, Ø., Maast, T. E., Mondol, N. H., Jahren J., Bjørlykke, K., “Changes in physical properties of a reservoir sandstone as a function of burial depth – The Etive Formation, northern North Sea”, Marine and Petroleum Geology, Vol. 27, pp. 1725-1735, 2010.
    [16]Athy, L. F., “Density, porosity and compaction of sedimentary rocks”, American Association of Petroleum Geologists Bulletin, Vol. 14, pp. 1-24, 1930.
    [17]Dickinson, G., “Geological aspects of abnormal reservoir pressure in Gulf Coast Louisiana”, American Association of Petroleum Geologists Bulletin, Vol. 37, pp. 410-432, 1951.
    [18]Hoholick, J. D., Metarko, T., Potter, P. E., “Regional variations of porosity and cement: St. Peter and Mount Simon Sandstones in Illinois Basin”, American Association of Petroleum Geologists Bulletin, Vol. 68, pp. 753-764, 1984.
    [19]Schmoker, J. W., Halley, R. B., “Carbonate porosity versus depth: a prediction relation for South Florida”, American Association of Petroleum Geologists Bulletin, Vol. 66, pp. 2561-2570, 1982.
    [20]Shi, T., Wang, C. Y., “Pore pressure generation in sedimentary basins: overloading versus aquathermal”, Journal of Geophysical Research, Vol. 91, No. B2, pp.2153-2162, 1986.
    [21]許瑞育,「沉積岩應力相關之流體特性與沉積盆地之孔隙水壓異常現象」,國立中央大學,碩士論文,2007。
    [22]Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., Wu, Y. H., Sone, H., “Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A”, International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 1141-1157, 2010.
    [23]David, C., Wong, T. F., Zhu, W., Zhang, J., “Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust”, Pure and Applied Geophysics, Vol. 143, No. 1/2/3, pp. 425-456, 1994.
    [24]Morrow, C. A., Shi, L. Q., Byerlee, J. D., “Permeability of fault gouge under confining pressure and shear stress”, Journal of Geophysical Research, Vol. 89, No. B5, pp. 3193-3200, 1984.
    [25]Lambe, T. W., Whitman, R. V., Soil mechanics, John Wiley & Sons, New York, 1969.
    [26]吳文傑,「應力歷史相關之沉積岩孔隙率模型」,國立中央大學,碩士論文,2009。
    [27]Yang, Y., Aplin, A.C., “Permeability and petrophysical properties of 30 natural mudstones”, Journal of Geophysical Research, Vol. 112, pp. 1-24, 2007.
    [28]Yang, Y., Aplin, A. C., “A permeability-porosity relationship for mudstones”, Marine and Petroleum Geology, Vol. 27, pp. 1692-1697, 2010.
    [29]Bernabé, Y., Mok, U., Evans, B., “Permeability-porosity relationship in rocks subjected to various evolution processes”, Pure and Applied Geophysics, Vol. 160, pp. 937-960, 2003.
    [30]Smith, J. E., “The dynamics of shale compaction and evolution of pore-fluid pressure”, Mathematical Geology, Vol. 3, No. 3, pp. 239-263, 1971.
    [31]Bethke, C. M., “A numerical model of compaction-driven ground water flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins”, Journal of Geophysical Research, Vol. 90, No. B8, pp. 6817-6828, 1985.
    [32]Dugan, B., Flemings, P. B., “Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps”, Science, Vol. 289, pp. 288-291, 2000.
    [33]Jacobs, W., Van Kesteren, W. G. M., Winterwerp, J. C., “Permeability and consolidation of sediment mixtures as function of sand content and clay mineralogy”, International Journal of Sediment Research, Vol. 22, No. 3, pp. 180-187, 2007.
    [34]Ghabezloo, S., Sulem, J., Guédon, S., Martineau, F., “Effective stress law for the permeability of a limestone”, International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 297-306, 2009.
    [35]Malkovsky, V. I., Zharikov, A. V., Shmonov, V. M., “New methods for measuring the permeability of rock samples for a single-phase fluid”, Physics of the Solid Earth, Vol. 45, No. 2, pp. 89-100, 2009.
    [36]Holloway, S., “Storage of fossil fuel-derived carbon dioxide beneath the surface of the earth”, Annual Review of Energy and the Environment, Vol. 26, pp. 145-166, 2001.
    [37]Marty, B., Dewonck, S., France-Lanord, C., “Geochemical evidence for efficient aquifer isolation over geological timeframes”, Nature, Vol. 425, pp. 55-58, 2003.
    [38]Hildenbrand, A., Schlömer, S., Krooss, B. M., “Gas breakthrough experiments on fine-grained sedimentary rocks”, Geofluids, Vol. 2, pp. 3-23, 2002.
    [39]Huysmans, M., Dassargues, A., “Hydrogeological modeling of radionuclide transport in low permeability media: a comparison between Boom Clay and Ypresian Clay”, Environmental Geology, Vol. 50, No. 1, pp. 122-131, 2006.
    [40]Bickle, M., Chadwick, A., Huppert, H.E., Hallworth, M., Lyle, S., “Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage”, Earth and Planetary Science Letters, Vol. 255, pp. 164-176, 2007.
    [41]Kozeny, J., “Ueber kapillare Leitung des Wassers im Boden”, Stizungsber Akad Wiss Wine, Vol. 136, pp. 271-306, 1927.
    [42]Carman P. C., “Fluid flow through granular beds”, Teansactions-Institution of Chemical Engineeres, Vol. 15, pp. 150-167, 1937.
    [43]Wong, P. Z., Koplik, J., Tomanic, J. P., “Conductivity and permeability of rocks”, Physical Review B, Vol. 30, No. 11, pp. 6606-6614, 1984.
    [44]Bryant, S., Blunt, M., “Prediction of relative permeability in sample porous media”, Physical Review A, Vol. 46, No. 4, pp. 2004-2011, 1992.
    [45]Schwartz, L. M., Martys N., Bentz, D. P., Garboczi, E. J., Torquato, S., “Cross-property relations and permeability estimation in model porous media”, Physical Review E, Vol. 48, No. 6, pp. 4548-4591, 1993.
    [46]Koponen, A., Kataja, M., Timonen, J., “Permeability and effective porosity of porous media”, Physical Review E, Vol. 56, No. 3, pp. 3319-3325, 1997.
    [47]Singh, V. P., Kinematic wave modeling in water resources: Enviromental hydrology, Wiley, New York, 1997.
    [48]Xu, P., Yu, B., “Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry”, Advances in Water Resources, Vol. 31, pp. 74-81, 2008.
    [49]翁孟嘉,「麓山帶砂岩之力學特性及其與微組構關係研究」,國立台灣大學,博士論文,2002。
    [50]Ioannidis, M. A., Kwiecien, M. J., Chatzis, I., “Statistical analysis of the porous microstructure as a method for estimating reservoir permeability”, Journal of Petroleum Science and Engineering, Vol. 16, pp. 251-261, 1996.
    [51]Fossen, H., Schultz, R. A., Shipton, Z. K., Mair, K., “Deformation bands in sandstones: A review”, Journal of the Geological Society, Vol.164, pp, 755-769, 2007.
    [52]Lin, A.T., Watts, A.B., “Origin of the West Taiwan Basin by orogenic loading and flexure of a rifted continental margin”, Journal of Geophysical Research, Vol. 107, No. B9, pp. 1-19, 2002.
    [53]American Society for Testing and Materials, “Test method for permeability of granular soils (Constant Head)”, ASTM D2434-68, 1974.
    [54]ISRM, “Rock characterization testing and monitoring”, ISRM Suggested Method, E. T. Brown (eds.), Pergamon Press, Oxford, United Kingdom, 1981.
    [55]Tanikawa, W., Shimamoto, T., Wey, W. K., Wu, W. Y., Lin, C. W., Lai, W. C., “Sedimentation and generation of abnormal fluid pressure in the focal area of 1999 Taiwan Chi-Chi earthquake”, Proceeding of the ISRM International Symposium , 3rd ARMS, pp. 553-557, Tokyo, Japan, 2004.
    [56]Tanikawa, W., Shimamoto, T., “Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks”, Hydrology and Earth System Sciences Discussions, Vol. 3, pp. 1315-1338, 2006.
    [57]Tanikawa, W., Shimamoto, T., “Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks”, International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 229-238, 2009.
    [58]黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏,「台灣陸上斷層帶地質構造與地殼變形調查研究(5/5)-台灣西部麓山帶地區地下構造綜合分析」,經濟部中央地質調查所報告93-13號,2004。
    [59]Klinkenberg, L. J., “The permeability of porous media to liquids andgases”, American Petroleum Institute, drilling and production practices, pp.200-213, 1941.
    [60]American Society for Testing and Materials, “Standard Test Method for Sieve Analysis of Surfacing for Asphalt Roofing Products”, ASTM D452-91, 2002.
    [61]American Society for Testing and Materials, “Standard Test Method for Particle-Size of Soils”, ASTM D422-63, 2007.
    [62]American Society for Testing and Materials, “Standard Test Method for Specific Gravity of Soils by Water Pycnometer”, ASTM D854-06, 2006.
    [63]Boggs, S., Principles of Sedimentology and Stratigraphy, Fourth edition, Prentice Hall, 2006.
    [64]Pettijohn, F. J., Potter, P. E., Siever, R., Sand and sandstone, Springer-Verlag, Berlin, 1987.
    [65]Anselmetti, F. S., Luthi, S., Eberli, G. P., “Quantitative characterization of carbonate pore system by digital image analysis”, Journal of AAPG Bulletin, Vol. 82, No. 10, pp. 1815-1836, 1998.
    [66]Image J,取自http://rsb.info.nih.gov/ij/index.html。
    [67]Pape, H., Clauser, C., Iffland, J., “Variation of permeability with porosity in pandstone diagenesis interpreted with a fractal pore space model”, Journal of AAPG Bulletin, Vol. 82, No. 10, pp. 1815-1836, 1998.
    [68]林怡男,「應力歷史對麓山帶沉積岩孔隙率及滲透率應力相依模式影響之探討」,國立中央大學,碩士論文,2009。

    QR CODE
    :::