| 研究生: |
相虹 Hsiang Hung |
|---|---|
| 論文名稱: |
以分支定界法求解具批量機台與時間延滯之零工式生產排程問題 A Branch and Bound Algorithm for Job Shop Problem with a Batch Machine and Time-Lags |
| 指導教授: |
沈國基
Gwo-Ji Sheen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 批量生產 、時間延滯 、分支定界法 、零工式 |
| 外文關鍵詞: | Batch, Time-Lags, Branch and Bound, Job Shop |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討用分支定界法求解零工式生產排程的問題,其環境具有批量生產與時間延遲之限制特性,批量生產為機台上指定之作業可以被批量加工。而等候時間延滯上的限制中,因考量到批量機台的加工,故當作業從前一個工作站離開後,該作業不需要等待最小的時間,可以直接進入下個工作站,但仍需要在一定的時間之內抵達下一個工作站。
因此時間延滯上的限制需要考慮到當工件抵達機台上可以開始被加工的時間,再加上指定機台具有批量生產之功能,希望藉由批量生產來減少所需的完工時間。為了解決以上研究內容中提出的限制問題,我們將在本研究中發展一分支定界的演算法,並加入批量生產的限制,目標為在此環境下能夠得到最小的完工時間。
The main purpose of this research is to discuss a branch and bound algorithm for job shop problem with a batch machine and time-lags, the environment have the batches and the time lags, batch processing of machine indicated on the workpiece can be batch processing, and waiting time constraints, when after the completion of the artifacts used workstation, over a period of time is needed to enter to the next station for processing, and the workpiece must wait for a certain minimum time, at the same time wait for no more than a certain time.
Therefore, the waiting time limit needs to take into account the time that each workpiece can start processing. In addition, some limited machines have the capacity of mass production. It is hoped that by batch processing, the required completion time can be reduced. To solve this problem, we will develop a branch and bound algorithm, and the objective is minimize the maximum makespan.
[1] Adams, J., Balas, E., & Zawack, D. (1988). The Shifting Bottleneck Procedure for Job Shop Scheduling. Management science 34(3),391-401.
[2] Artigues, C., Huguet, M.-J., & Lopez, P. (2011). Generalized disjunctive constraint propagation for solving the job shop problem with time lags. Engineering Applications of Artificial Intelligence, 24(2), 220–231.
[3] Baker KR. (1974), Introduction to Sequencing and Scheduling. Wiley: New York.
[4] Balas, E. (1969). Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm. Operations Research, 17(6), 941–957.
[5] Brucker, P., Jurisch, B., and Sievers, B. (1994). A branch and bound algorithm for the job-shop scheduling problem. Discrete Applied Mathematics, 49(1-3), 107–127.
[6] Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational Research, 11(1), 42–47.
[7] Carlier, J., & Pinson, E. (1989). An Algorithm for Solving the Job-Shop Problem. Management Science, 35(2), 164–176.
[8] Carlier, J., & Pinson, E. (1990). A practical use of Jackson’s preemptive schedule for solving the job shop problem. Annals of Operations Research, 26(1-4), 269–287.
[9] Carlier, J., & Pinson, E. (1994). Adjustment of heads and tails for the job-shop problem. European Journal of Operational Research, 78(2), 146–161.
[10] Caumond, A., Lacomme, P., & Tchernev, N. (2008). A memetic algorithm for the job-shop with time-lags. Computers & Operations Research, 35(7), 2331–2356.
[11] Dauzere-Peres, S., & J.B. Lasserre (1993). A modified shifting bottleneck procedure for job-shop scheduling. International Journal of Production Research, 31(4), 923–932.
[12] Giffler, B., & Thompson, G. L. (1960). Algorithms for Solving Production-Scheduling Problems. Operations Research, 8(4), 487–503.
[13] Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete Mathematics, 287–326.
[14] Gonzalez, T., & Sahni, S. (1978). Flowshop and Job shop Schedules: Complexity and Approximation. Operations Research, 26(1), 36–52.
[15] Knopp, S., Dauzère-Pérès, S., & Yugma, C. (2017). A batch-oblivious approach for Complex Job-Shop scheduling problems. European Journal of Operational Research, 263(1), 50–61.
[16] Pinedo, Michael L. (2008). Scheduling Theory, Algorithms, and Systems. Third Edition. Chapter 7, 179-189.
[17] Sheen, G.-J., & Liao, L.-W. (2007). A branch and bound algorithm for the one-machine scheduling problem with minimum and maximum time lags. European Journal of Operational Research, 181(1), 102–116.
[18] Tangudu, S. K., & Kurz, M. E. (2006). A branch and bound algorithm to minimise total weighted tardiness on a single batch processing machine with ready times and incompatible job families. Production Planning & Control, 17(7), 728–741.
[19] Wang, J., & Luh, P. B. (1997). Scheduling Job Shops with Batch Machines Using the Lagrangian Relaxation Technique. European Journal of Control, 3(4), 268–279.