| 研究生: |
邱雍華 CIOU,YONG-HUA |
|---|---|
| 論文名稱: |
改良式杜鵑鳥演算法發展與應用 |
| 指導教授: |
莊德興
JHUANG,DE-SING |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 208 |
| 中文關鍵詞: | 改良式杜鵑鳥演算法 、結構最佳化設計 、矩形鋼管混凝土 、軸壓與雙向彎矩互制圖 |
| 外文關鍵詞: | Modified Cuckoo Search Algorithm, Optimal Structures Design, Rectangular Concrete Filled Steel Tubular Columns, P-M Curves |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對連續變數、離散變數、混和變數等最佳化問題,以杜鵑鳥演算法(Cuckoo Search Algorithm, CS)為基礎,提出改良式杜鵑鳥演算法(Modified cuckoo search, MCS)。CS演算法為一種全域的隨機搜尋法,其構想來自於杜鵑鳥的寄生雛幼行為,並結合列維飛行(Lévy flight)擾動機制,列維飛行為源自模擬果蠅和鳥類在飛行時的移動狀態之數學方法。然而,CS演算法和其他高階啟發演算法類似,在求解最佳化問題時存在著局部搜索能力差,接近最佳解時搜索效率下降,以及求解高度非線性問題時可能陷入局部最佳而使演化停滯等缺失。為改善此二缺失,本文乃提出MCS演算法,期可加速局部搜尋效率,並維持鳥巢的多樣性。為驗證MCS演算法的可行性,本文藉由不同類型的算例,包含數學式及結構輕量化設計的問題等,探討CS及MCS演算法方法之優劣。最後,本文亦將MCS演算法應用於製作矩形鋼管混凝土構材之軸壓與雙向彎矩互制圖,以克服在考慮局部挫屈時使用割線法於高軸壓下不易收斂的缺失。
This article is devoted to the presentation of a modified cuckoo search (MCS) algorithm for solving optimization problems with discrete, continuous and mixed variables. The cuckoo search (CS) algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Lévy flight behaviour of some birds and fruit flies. The main deficiency of CS algorithm is that all nests have the tendency to converge to the current best solution which may be a local optimum or a solution near local optimum. In this case, all nests will move toward to a small region and the global exploration ability will be weakened. To overcome the drawback of premature convergence of the method and to make the algorithm explore the local and global minima thoroughly at the same time, a MCS algorithm is proposed. More than ten typical optimization problems studied in the literature are used to validate the effectiveness of the algorithm. The results from comparative studies of the MCS algorithm againsts other optimization algorithms are reported to show the solution quality of the proposed MCS algorithm. The advantages and drawbacks of the MCS algorithm is also discussed in this report. Finally, the MCS algorithm is also used to construct P-M curves for concrete-filled steel tubular (CFT) columns. The results show that the MCS algorithm can effectively applied to construct P-M curves for CFT columns.
[1] Arora, J.S., (2002) “Method for Discrete Variable Structural Optimization,” In: Burns, S.A. (ed): Recent Advances in Optimal Structural Design, Technical Committee on Optimal Structural Design. ASCE, Reston, VA, pp. 1-35.
[2] Ashish, K. B., Vineet, K. S., Anil, K., and Girish, K. S., (2014) “Cuckoo Search Algorithm and Wind Driven Optimization Based Study of Satellite Image Segmentation For Multilevel Thresholding Using Kapur’s Entropy,” Expert Systems with Applications ,Vol.41, pp.3538–3560.
[3] Bremicker, M., Papalambros, P. Y., and Loh, H. T., (1990) “Solution of Mixed-Discrete Structural Optimization Problem with a New Sequential Linearization Algorithm,” Computers and Structures, Vol. 37, No. 4, pp. 451-461.
[4] Bouzy, G., and Abel, J.F., (1995) “A Two-step Procedure for Discrete Minimization of Truss Weight” Structural Optimization, Vol.9, No.2, pp.128-131.
[5] Cai, J., and Thierauf, G., (1993) “Discrete Optimization of Structures Using an Improved Penalty Function Method,” Engineering Optimization, Vol. 21, pp. 293-306.
[6] Camp, C., Pezeshk, S., and Cao, G., (1998) “Optimized Design of Two Dimensional Structures Using a Genetic Algorithm,” Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 551-559.
[7] Chai, S., and Sun, H. C., (1996) “A Relative Difference Quotient Algorithm for Discrete Optimization,” Structural Optimization, Vol. 12, No. 1, pp. 46-56.
[8] Coello, C. A., (2002) “Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art,” Computer Methods in Applied Mechanics and Engineering, Vol. 191(12), pp. 1245-1287.
[9] Davis, J. S., (1991) Handbook of Genetic Algorithm, Van Nostrand Reinhold.
[10] Deb, K., (2000) “An Efficient Constraint Handling Method for Genetic Algorithms,” Comput. Methods Appl. Mech. Engrg., Vol. 186, pp. 311-338.
[11] Deb, K., Gulati, S., and Chakrabarti, S., (1998) “Optimal Truss-Structure Design Using Real-Coded Genetic Algorithm,” Proceeding of the Third Annual Conference, University of Wisconsin, pp 479-486.
[12] De Jong, K. A., (1975) “An Analysis of the Behavior of a Class of genetic Adaptive Systems,” Ph.D. Dissertation, University of Michigan, Dissertation Abstracts International, Vol. 36, No. 10, 5140B. (University Microfilms No. 76-9381).
[13] Gandomi, A. H., Talatahari, S., Yang, X. S. and Deb, S., (2013) “Design Optimization of Truss Structures Using Cuckoo Search Algorithm,”The Structural Design of Tall and Special Buildings Struct. Vol.22, pp.1330–1349.
[14] Gandomi, A. H., Yang, X. S., and Alavi, A. H., (2013) “Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems,” Engineering with Computers Vol.29, pp.17–35.
[15] Gao W., Liu S., and Huang L., (2012) “A Global Best Artificial Bee Colony Algorithm for Global Optimization,” Journal of Computational and Applied Mathematics, Vol. 236, pp. 2741-2753.
[16] Geem, Z. W., Kim, J. H., and Loganathan, G. V., (2001) “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 76(2), pp. 60-68.
[17] Geem, Z. W., (2006) “Optimal Cost Design of Water Distribution Networks using Harmony Search,” Engineering Optimization, Vol. 38, No. 3, pp. 259-280.
[18] Groenwold, A. A., Stander, N., and Snyman, J. A., (1996) “A Pseudo Discrete Rounding Method for Structural Optimization,” Structural Optimization, Vol. 11, pp. 218-227.
[19] Groenwold, A. A., Stander, N., and Snyman, J. A., (1999) “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No.6, pp. 749-766.
[20] Holland, J. H., (1962) “Outline for a Logical Theory of Adaptive System,” Journal of the Association for Computing Machinery, Vol. 3,No. 3, pp. 297-314.
[21] Homaifar, A., Lai, S. H.-V., and Qi, X., (1994) “Constrained Optimization Via Genetic Algorithms,” Simulation, Vol. 62(4), pp. 242-254.
[22] Jivotovski, G., (2000) “A Gradient Based Heuristic Algorithm and Its Application to Discrete Optimization Of Bar Structures,” Structural and Multidisciplinary Optimization, Vol.19, No.3, pp.237-248.
[23] Kavile, D., and Powell, G. H., (1971), “Efficient Reanalysis of Modified Structures,” Journal of the Structural Division, ASCE., Vol. 97, No. 1, pp. 377-392.
[24] Kaveh, A., and Bakhshpoori, T., (2013) “Centre Optimum Design of Steel Frames Using Cuckoo Search Algorithm with Lévy flights,” The Structural Design of Tall and Special Buildings Vol.22, pp.1023–1036.
[25] Lee, K. S., and Geem, Z. W., (2004) “A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice,” Comput. Methods Appl. Mech. Engrg., Vol. 194, pp. 3902-3933.
[26] Lim, O. K., and Arora, J. S., (1986) “An Active Set RQP-Algorithm for Engineering Design Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol.57, pp.51−65.
[27] Liang, Q. Q., Uy, B., and Liew, J. Y. R., (2005) “Strength of Concrete-filled Steel Box Columns with Local Buckling Effects,” Australian Journal of Structural Engineering, Vol.7, pp.145-155.
[28] Liang, Q. Q., Uy, B., and Liew, J. Y. R., (2007) “Local Buckling of Steel Plates in Concrete-filled Thin-walled Steel Tubular Beam-columns,” Journal of Constructional Steel Research, Vol.63, pp.396-405.
[29] Liang, Q.Q., (2008) “Nonlinear Analysis of Short Concrete Filled Steel Tubular Beam–columns Under Axial Load and Biaxial Bending,” Journal of Constructional Steel Research, Vol.64, pp.295–304.
[30] Mahdavi, M., Fesanghary, M., and Damangir, E., (2006) “An Improved Harmony Search Algorithm for Solving Optimization Problems,” Applied Mathematics and Computation, Vol.188, pp.1567-1579.
[31] March, J., Cohen, M., and Olson, (1972) “A Garbage Can Model of Organization Choice,” Administrative Science Quarterly, pp. 1-25.
[32] Metropolis, N., Rosenbluth, A. W., Teller, A. H., and Teller, E., (1953) “Equation of State Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087-1092.
[33] Parkinson, A., and Wilson, M., (1989) “Development of a Hybrid SQP -GRG Algorithm for Constrained Nonlinear Programming,” Transactions of ASME, Journal of Mechanisms and Automation in Design, Vol.110, No.1, pp.73−83.
[34] Pedersen, P., (1973) “Optimal Joint Positions for Space Trusses,” Journal of the Structural Division, ASCE, Vol.99, No.12, pp. 2459−2475.
[35] Piechocki, J., Ambroziak, D., Palkowski, A., and Redlarski, G., (2014) “Use of Modified Cuckoo Search Algorithm in the Design Process of Integrated Power Systems for Modern and Energy Self-sufficient Farms,” Applied Energy, Vol.114, pp.901–908.
[36] Ponterosso, P., and Fox, D. S. J., (1999) “Heuristically seeded genetric algorithms applied to truss optimization,” Engineering with Computers, Vol.15, No.4, pp.345-355.
[37] Price K., and Storn R., (1995) “Differential Evolution-A simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces,” Technical report TR-95-012, International Computer Science Institute, Berkeley, CA.
[38] Price Kenneth V., (1999) “An Introduction to Differential Evolution,” In: Corne, D., Dorigo, M., Glover, F. (Eds.), New Ideas in Optimization, McGraw-Hill, London, pp. 79-108.
[39] Ouaarab, A., Belaïd, A., and Yang, X. S., (2014) “Discrete Cuckoo Search Algorithm for the Travelling Salesman Problem,” Neural Comput & Applic, Vol.24, pp.1659–1669.
[40] Rajeev, S., and Krishnamoorthy, C. S., (1997) “Genetic Algorithms-based Methodologies for Design Optimization of Trusses,” Journal of Structural Engineering, ASCE, Vol.123, No.3, pp.350−358.
[41] Sandgren, E., (1990) “Nonlinear Integer and Discrete Programming in Mechanical Design Optimization,” J. Mech. Des. ASME, Vol. 112,pp.223-229.
[42] Shi, Y., and Eberhart, R. C., (1998) “A Modified Particle Swarm Optimizer,” In: Proceedings of the International Congress on Evolutionary Computation, IEEE Service Center, Piscataway, NJ, pp. 69-73.
[43] Simon, H. A., (1960) “Some Further Notes On a Class of Skew Distribution Functions,” Information and Control, Vol. 3, pp. 80-88.
[44] Thierauf, G., and Cai, J., “Parallelization of the Evolution Strategy for Discrete Structural Optimization Problems,” Computer-Aided Civil and Infrastructure Engineering, Vol.13, No.1, pp.23-30.
[45] Valian, E., Mohanna, S., and Tavakoli, S., (2011) “Improved Cuckoo Search Algorithm for Feedforward Neural Network Training” International Journal of Artificial Intelligence & Applications , Vol.2, No.3, pp.36-43.
[46] Walton, S., Hassan, O., Morgan, K., and Brown, M. R., (2011) “Modified Cuckoo Search: A New Gradient Free Optimisation Algo” Chaos, Solitons & Fractals, Vol.44, pp.710–718.
[47] Wang, D., Zhang W. H., and Jiang, J. S., (2002) “Truss Shape Optimi -zation with Multiple Displacement Constraints,” Computer Methods in Applied Mechanics and Engineering, Vol.191, No.33, pp.3597−3612.
[48] Whitley, D., (1989) “The Genitor Algorithm and Seiection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best,” Proceeding of the Third International Conference on Genetic Algorithm, J. D. Schaffer, pp. 115-121, Morgon Kaufmann, San Mateo, California.
[49] Wu, S. J., and Chow, P. T., (1995) “Genetic Algorithms for Nonlinear Mixed Discrete-Integer Optimization Problems Via Meta-Genetic Parameter Optimization,” Engrg. Optim., Vol. 24, pp. 137-159.
[50] Wu, S. J., and Chow, P. T., (1995) “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, Vol. 55, No. 4, pp.695-702.
[51] Wu, S. J., and Chow, P. T., (1995) “The Application of Genetic Algorithms to Discrete Optimization Problems,” Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp. 587-598.
[52] Yang, J., and Soh, C. K., (1997) “Structural Optimization by Genetic Algorithms with Tournament Selection,” Journal of Computing in Civil Engineering, ASCE, Vol.11, No.3, pp.195−200.
[53] Yang, X. S., (2008) “Nature-inspired Metaheuristic Algorithms,” Luniver Press, UK.
[54] Yang, X. S., and Deb, S., (2009) “Cuckoo Search via Lévy flights. In Proceedings of World Congress on Nature & Biologically Inspired Computing,” IEEE Publications, USA, pp.210–214.
[55] Yang, X.S., and Deb, S., (2010) “Engineering Optimisation by Cuckoo Search,” International Journal of Mathematical Modelling and Numerical Optimisation 1, pp.330–343.
[56] 吳泳達 (2003),「離散拉格朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
[57] 林俊榮 (2011.4),「以力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢。
[58] 邱進東、郭信川 (2010.8),「智慧型垃圾桶決策之進化演算法於懸臂樑最佳化設計」,德林學報,第二十四期。
[59] 胡曉輝 (2002.4) ,「粒子群優化算法介紹」, <http://web.ics.purdue/hux/tutorials.shtml>。
[60] 莊玟珊 (2007),「PSO-SA混合搜尋法與其它結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
[61] 陳冠廷 (2011),「以整合力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢。
[62] 張慰慈 (2003),「DLM-GA混合搜尋法於結構離散最佳化設計之 應用」,碩士論文,國立中央大學土木工程研究所,中壢。
[63] 莊德興、張慰慈 (2005),「離散拉格朗日法於大型桁架輕量化設計之加速搜尋策略」,中國土木水利工程學刊,第十七卷,第一期,第143-151頁。
[64] 藍志浩 (2005),「考慮動態反應束制及關連性離散變數之結構最 佳化設計」,碩士論文,國立中央大學土木工程研究所,中壢。
[65] 鐘昀展 (2011),「PSO-DE混合式搜尋法應用於結構最佳化設計之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[66] 林芝妤 (2013) ,「基於需求涵蓋率的測試案例篩選與排程」,碩士論文,中原大學工業與系統工程研究所,中壢
[67] 呂 宜 倫 (2013),「混合型人工蜂群演算法之發展與應用」,碩士論文,國 立 中 央 大 學 土 木 工 程 學 系,中壢
[68] 林峙良 (2013),「人工蜂群演算法使用隨機搜尋與隨機鄰點搜尋機制之比較與應用」,碩士論文,國 立 中 央 大 學 土 木 工 程 學 系,中壢
[69] 戴才淇(2014),「混沌理論混合粒子群搜尋法之結構尺寸最佳化設計」,碩士論文,國 立 中 央 大 學 土 木 工 程 學 系,中壢