跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阿芭特
Alfonsina Abat Amelenan Torimtubun
論文名稱: 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子
Solution-Sheared Dicyanomethylene-Substituted Quinoidal Dithioterthiophene (DTDSTQ)-Based Small Molecules for High-Performance n-Type Organic Thin Film Transistors Application
指導教授: 劉振良
Cheng-Liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2017
畢業學年度: 104
語文別: 英文
論文頁數: 123
中文關鍵詞: 有機薄膜晶體管溶液剪切n型有機小分子有機半導體
外文關鍵詞: organic thin film transistors, solution shearing, n-type organic small molecule, organic semiconductor
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機半導體溶液製程沉積方法提供有前景的技術來製造大面積,低成本和彈性的有機電子元件。本研究報告了通過剪切力塗佈法方法及分子設計工程增強n通道有機薄膜電晶體管 (Organic Thin Film Transistor; OTFT) 性能的策略。我們使用下列四種具有不同烷基側鍊長度的二氰基亞甲基取代的醌型二噻吩噻吩(DTDSTQ)為核心的新型有機半導體的新型材料系列: (1)DTDSTQ-6 (硫代己基),(2)DTDSTQ-10 (硫代癸基),(3)DTDSTQ-14 (硫代十四烷基),並且在烷基側餾分中不引入硫 (4)DTDRTQ-14 (十四烷基)。從DFT計算和單晶X光射線衍射獲得的優化的幾何結果顯示了DTDSTQ的高核平面性。 DTDSTQ核心以面對面的π-π堆疊佈置堆疊,堆疊距離為3.42 Å,短分子間S-N距離為3.56 Å,形成二維網絡電荷傳輸。更進一步結合2D-GIXRD分析,知道有機分子側立於基板上。高核平面性和非常低 -4.2 eV的LUMO能階有利的分子組裝,也表明DTDSTQ可能是新型有前景的n型有機半導體材料。對這些新化合物的物理,電化學以及電學性質進行了深入研究。通過溶液剪切力塗佈的DTDSTQ-14實現了高達0.41 cm2V-1s-1的最高電子遷移率,具有至少1個月的良好熱穩定性。結果表明,通過側鏈基工程可以改善剪切DTDSTQ的元件性能。


    Solution-processable organic semiconductor deposition methods show promising technologies to fabricate large-area, low-cost and flexible organic electronics. This study reports the strategy for enhancing n-channel organic thin film transistors (OTFTs) performance by molecular design engineering through solution-shearing method. New series of organic semiconductor materials based small molecules with the core of dicyanomethylene-substituted quinoidal dithioterthiophene (DTDSTQ) modified by different alkyl side chain length: (1)DTDSTQ-6 (thio-hexyl), (2)DTDSTQ-10 (thio-decyl), (3)DTDSTQ-14 (thio-tetradecyl) and without sulfur introduction in alkyl side moiety: (4)DTDRTQ-14 (tetradecyl) were used. Optimized geometry obtained from DFT calculation and single-crystal X-ray diffraction reveals the high core planarity of DTDSTQ. The DTDSTQ core packed in a face-to-face slipped π-π stacking arrangement, with short stacking distance of 3.42 Å and short intermolecular S – N distance of 3.56 Å, forming 2-dimensional network charge transport. Further investigation with 2D-GIXRD analysis reveal that molecules packed edge-on to the substrate. The favorable molecular packing, the high core planarity and very low LUMO energy level of -4.2 eV suggesting that DTDSTQs could be a promising new n-type organic semiconductor materials. The physical, electrochemical as well as electrical properties of these new compounds are thoroughly investigated. The highest electron mobility of up to 0.41 cm2 V-1 s-1 with good thermal stability for at least 1 month was achieved by solution-sheared DTDSTQ-14. The results show that the device performance of solution-sheared DTDSTQs can be improved by side chain engineering.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF TABLES xiii CHAPTER 1 INTRODUCTION 1 1-1 Background 1 1-2 Organic Thin Film Transistors (OTFTs) 4 1-2-1 OTFTs Device Architecture 5 1-2-2 Operating Principle 6 1-2-3 Electrical Characteristics 9 1-3 Organic Semiconductor Small Molecules 15 1-3-1 p-Type Organic Semiconductor 16 1-3-2 n-Type Organic Semiconductor 17 1-3-2-1 Material Requirements 20 1-3-2-2 Quinoidal Oligothiophenes 22 1-4 Organic Semiconductor Deposition Process 24 1-4-1 Vacuum Thermal Deposition 24 1-4-2 Solution Deposition 26 1-4-2-1 Drop-casting 26 1-4-2-2 Spin-coating 29 1-4-2-3 Printing 30 1-4-2-4 Meniscus-guided Coating - Solution Shearing 33 1-5 Research Objective 35 1-6 Thesis Outline 37 CHAPTER 2 EXPERIMENTAL SECTION 39 2-1 Materials 39 2-1-1 Organic Semiconductors 39 2-1-2 Solvents 40 2-2 Experiment Apparatus 40 2-3 Experimental Methods 41 2-3-1 Device Fabrication 41 2-3-2 Electrical Measurement 43 2-3-3 Thin-Film Characterization 44 2-3-3-1 Polarized Optical Microscopy (POM) 44 2-3-3-2 Ultraviolet – Visible Spectrometer (UV-Vis) 44 2-3-3-3 Atomic Force Microscopy (AFM) 45 2-3-3-4 Grazing Incidence X-Ray Diffraction (GIXRD) 45 2-3-3-5 Transmission Electron Microscopy (TEM) 46 2-3-4 DFT Calculation 46 CHAPTER 3 RESULTS AND DISCUSSION 47 3-1 Material Properties 47 3-1-1 Physical and Electrochemical Properties 47 3-1-2 Molecular Orbital Computation 49 3-1-3 Optical Properties 51 3-2 Organic Thin-Film Transistors Characterization 54 3-3 Crystal Structures 59 3-4 Thin Film Microstructures and Morphologies 61 3-4-1 Optical and Polarized Optical Microscopy (OM, POM) 61 3-4-2 Atomic Force Microscopy (AFM) 65 3-4-3 Grazing – Incidence X-Ray Diffraction (GIXRD) 68 3-4-4 Transmission Electron Microscopy (TEM) 71 3-5 Device Stability 73 CHAPTER 4 CONCLUSION AND FUTURE WORK 75 4-1 Conclusion 75 4-2 Future Work 76 BIBLIOGRAPHY 77 APPENDIX 85

    [1] J. E. Lilienfeld, Method and apparatus for controlling electric currents. US Pat. 1,745,175 1930, 1–4.
    [2] A. Facchetti, Mater. Today 2007, 10, 28.
    [3] C. Reese, M. Roberts, M. Ling, Z. Bao, Elsevier 2004, 7021, 20.
    [4] G. Horowitz, Adv. Mater. 1998, 10, 365.
    [5] M. Mas-Torrent, C. Rovira, Chem. Rev. 2011, 111, 4833.
    [6] D. Kahng, Electric Field Cotrolled Semiconductor Device 1963, 1–6.
    [7] Y. Kuo, Electrochem. Soc. Interface 2013, 22, 55.
    [8] Shirikawa, J. Chem. Soc. Chem. Commun. 1977, 578.
    [9] B. Kumar, B. K. Kaushik, Y. S. Negi, Polym. Rev. 2014, 54, 33.
    [10] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99.
    [11] M. Muccini, Nat. Mater. 2006, 5, 605.
    [12] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
    [13] H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
    [14] F. M. Li, A. Nathan, Y. Wu, B. S. Ong, Organic Thin Film Transistor Integration; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2011.
    [15] C. R. Newman, C. D. Frisbie, D. A. Da Silva Filho, J. L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
    [16] E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. Van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, D. M. De Leeuw, IEEE J. Solid-State Circuits 2007, 42, 84.
    [17] H. Wu, S. W. Chiang, W. Lin, C. Yang, Z. Li, J. Liu, X. Cui, F. Kang, C. P. Wong, Sci. Rep. 2014, 4, 6275.
    [18] D. Briand, A. Oprea, J. Courbat, N. Bârsan, Mater. Today 2011, 14, 416.
    [19] M.-J. Kim, D. W. Kim, Y. Noh, H. S. Kang, H. Kang, J. Y. Kim, C. D. Kim, I. B. Kang, I. J. Chung, IEEE Flex. Electron. Displays Conf. Exhib. 2009.
    [20] T. Someya, A. Dodabalapur, J. Huang, K. C. See, H. E. Katz, Adv. Mater. 2010, 22, 3799.
    [21] M. Guerin, A. Daami, S. Jacob, E. Bergeret, E. Bènevent, P. Pannier, R. Coppard, IEEE Trans. Electron Devices 2011, 58, 3587.
    [22] L. Zhang, T. Wu, Y. Guo, Y. Zhao, X. Sun, Y. Wen, G. Yu, Y. Liu, Sci. Rep. 2013, 3, 1080.
    [23] M. Eslamian, Nano-Micro Lett. 2017, 9, 1.
    [24] Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145.
    [25] R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. C. Ewbank, M. H. Haukaas, K. R. Mann, L. L. Miller, C. D. Frisbie, Adv. Mater. 2003, 15, 1278.
    [26] C. R. Newman, C. D. Frisbie, D. A. da Silva, J. L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater 2004, 16, 4436.
    [27] H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. van Breemen, D. M. de Leeuw, Nature 2001, 414, 599.
    [28] H. Sirringhaus, Adv. Mater. 2014, 26, 1319.
    [29] C. Cruickshank, Cintelliq simplifies patent research for the organic semiconductor industry 2007, 1–2.
    [30] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
    [31] R. Scaldaferri, Fabrication and Characterization of Advanced Organic Thin Film Tranistors, Universita Degli Studi Federico II di Napoli, 2009.
    [32] T. N. Jackson, Y. Lin, S. Member, D. J. Gundlach, IEEE J. Sel. Top. Quantum Electron. 1998, 4, 100.
    [33] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, S. Ponomarenko, S. Kirchmeyer, W. Weber, J. Appl. Phys. 2003, 93, 2977.
    [34] H. Rost, J. Ficker, J. S. Alonso, L. Leenders, I. McCulloch, Synth. Met. 2004, 145, 83.
    [35] Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, Y. Ma, Appl. Phys. Lett. 2003, 83, 1644.
    [36] M. L. Chabinyc, R. A. Street, J. E. Northrup, Appl. Phys. Lett. 2007, 90, 12.
    [37] M. L. Chabinyc, F. Endicott, B. D. Vogt, D. M. DeLongchamp, E. K. Lin, Y. Wu, P. Liu, B. S. Ong, Appl. Phys. Lett. 2006, 88, 11.
    [38] R. J. Chesterfield, New n-Channel Organic Semiconductors for Thin Film Transistors, University of Minnesota, 2004.
    [39] G. Horowitz, Adv. Mater. 1998, 10, 365.
    [40] C. R. C. Newman, C. D. Frisbie, A. Demetrio, S. Filho, J. Bre, Chem. … 2004, 4436.
    [41] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
    [42] H. Usta, A. Facchetti, Large Area Flex. Electron. 2015, 1.
    [43] H. Dong, C. Wang, W. Hu, Chem. Commun. 2010, 46, 5211.
    [44] B. O. D. Jurchescu, M. Popinciuc, B. J. Van Wees, T. T. M. Palstra, Adv. Mater. 2007, 19, 688.
    [45] N. Stingelin-Stutzmann, E. Smits, H. Wondergem, C. Tanase, P. Blom, P. Smith, D. de Leeuw, Nat. Mater. 2005, 4, 601.
    [46] Y. Li, Y. Wu, P. Liu, Z. Prostran, S. Gardner, B. S. Ong, Chem. Mater. 2007, 19, 418.
    [47] L. Chua, J. Zaumseil, J. Chang, E. C. Ou, Nature 2005, 434, 194.
    [48] J. Mei, Z. Bao, Chem. Mater 2014, 26, 604.
    [49] T. M. Pappenfus, R. J. Chesterfield, C. D. Frisbie, K. R. Mann, J. Casado, J. D. Raff, L. L. Miller, J. Am. Chem. Soc. 2002, 124, 4184.
    [50] B. A. Facchetti, M. Mushrush, H. E. Katz, T. J. Marks, Adv. Mater. 2003, 15, 33.
    [51] M. Yoon, S. a Dibenedetto, A. Facchetti, T. J. Marks, Thin Film. 2005, 3, 1348.
    [52] J. A. Letizia, A. Facchetti, C. L. Stern, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 13476.
    [53] H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 2000, 122, 7787.
    [54] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, W. Andreoni, Appl. Phys. Lett. 2002, 80, 2517.
    [55] R. J. Chesterfield, J. C. McKeen, C. R. Newman, C. D. Frisbie, P. C. Ewbank, K. R. Mann, L. L. Miller, J. Appl. Phys. 2004, 95, 6396.
    [56] J. Kastner, J. Paloheimo, H. K, L. I. Festkorperphysik, A. Vienna, Springer Ser. Solid-State Sci. 1993, 113, 512.
    [57] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 1995, 67, 121.
    [58] J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, J. Cornil, Proc. Natl. Acad. Sci. 2002, 99, 5804.
    [59] A. Afzali, C. Dimitrakopoulos, T. B. Carmichael, J. Am. Chem. Soc. 2002, 124, 8812.
    [60] H. Klauk, Organic Electronics Materials, Manufacturing and Applications; Weinheim, 2006.
    [61] J. L. Bredas, G. B. Street, Acc. Chem. Res. 1985, 18, 309.
    [62] A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chemie Int. Ed. 2000, 39, 4547.
    [63] J. Casado, R. Ponce Ortiz, J. T. López Navarrete, Chem. Soc. Rev. 2012, 41, 5672.
    [64] S. Handa, E. Miyazaki, K. Takimiya, Y. Kunugi, J. Am. Chem. Soc. 2007, 129, 11684.
    [65] Y. Xiong, J. Tao, R. Wang, X. Qiao, X. Yang, D. Wang, H. Wu, H. Li, Adv. Mater. 2016, 5949.
    [66] C. Wang, Y. Qin, Y. Sun, Y. S. Guan, W. Xu, D. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 15978.
    [67] C. Zhang, Y. Zang, F. Zhang, Y. Diao, C. R. McNeill, C. an Di, X. Zhu, D. Zhu, Adv. Mater. 2016, 8456.
    [68] C. S. Kim, S. Lee, E. D. Gomez, J. E. Anthony, Y. L. Loo, Appl. Phys. Lett. 2008, 93, 1.
    [69] H. Li, J. Am. Chem. Soc. 2012, 134, 2760.
    [70] J. Kim, S. Cho, J. Kang, Y. H. Kim, S. K. Park, ACS Appl. Mater. Interfaces 2014, 6, 7133.
    [71] J. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, M. Giles, I. Mcculloch, H. Sirringhaus, Chem. Mater 2004, 16, 4772.
    [72] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Nat. Commun. 2014, 5, 1.
    [73] S. S. Kim, S. I. Na, J. Jo, G. Tae, D. Y. Kim, Adv. Mater. 2007, 19, 4410.
    [74] M. Ikawa, T. Yamada, H. Matsui, H. Minemawari, J. Tsutsumi, Y. Horii, M. Chikamatsu, R. Azumi, R. Kumai, T. Hasegawa, Nat. Commun. 2012, 3, 1176.
    [75] M. Shao, S. Das, K. Xiao, J. Chen, J. K. Keum, I. N. Ivanov, G. Gu, W. Durant, D. Li, D. B. Geohegan, J. Mater. Chem. C 2013, 1, 4384.
    [76] H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364.
    [77] B. Peng, Z. Wang, P. K. L. Chan, J. Mater. Chem. C 2016, 4, 8628.
    [78] H. A. Becerril, M. E. Roberts, Z. Liu, J. Locklin, Z. Bao, Adv. Mater. 2008, 20, 2588.
    [79] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature 2011, 480, 504.
    [80] Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665.
    [81] W. Y. Lee, J. H. Oh, S. L. Suraru, W. C. Chen, F. Würthner, Z. Bao, Adv. Funct. Mater. 2011, 21, 4173.
    [82] S. Mann, G. a. Ozin, Synthesis of inorganic materials with complex form. Nature 1996, 382, 313–318.
    [83] G. H. Gelinck, H. E. a Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D. M. de Leeuw, Nat. Mater. 2004, 3, 106.
    [84] G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778.
    [85] T. Kowalewski, R. D. Mccullough, C. High, E. Synchrotron, C. U. V, N. York, J. Am. Chem. Soc. 2009, 131, 2521.
    [86] J. L. Segura, N. Martín, Chem Soc Rev 2004, 34, 31.
    [87] Y. W. Park, Chem. Soc. Rev. 2010, 39, 2352.
    [88] H. Usta, A. Facchetti, T. J. Marks, Acc. Chem. Res. 2011, 44, 501.
    [89] W. Jiang, Y. Li, Z. Wang, Chem. Soc. Rev. 2013, 42, 6113.
    [90] C. Wang, ACS Appl. Mater. Interfaces 2015, 7, 15978.
    [91] S. Vegiraju, G. He, C. Kim, P. Priyanka, Y. Chiu, C. Liu, C. Huang, J. Ni, Y. Wu, Z. Chen, G. Lee, S. Tung, C. Liu, M. Chen, 2017, 1606761, 1.
    [92] S. Feng, T. Bein, Science 1994, 265, 1839.
    [93] C. Zhang, Y. Zang, E. Gann, C. R. McNeill, X. Zhu, C. A. Di, D. Zhu, J. Am. Chem. Soc. 2014, 136, 16176.
    [94] Q. Wu, X. Qiao, Q. Huang, J. Li, Y. Xiong, X. Gao, H. Li, RSC Adv. 2014, 4, 16939.
    [95] T. Lei, J. H. Dou, J. Pei, Adv. Mater. 2012, 24, 6457.
    [96] Y. Sun, Y. Ma, Y. Liu, Y. Lin, Z. Wang, Y. Wang, C. Di, K. Xiao, X. Chen, W. Qiu, B. Zhang, G. Yu, W. Hu, D. Zhu, Adv. Funct. Mater. 2006, 16, 426.
    [97] Y. Liu, Y. Wang, W. Wu, Y. Liu, H. Xi, L. Wang, W. Qiu, K. Lu, C. Du, G. Yu, Adv. Funct. Mater. 2009, 19, 772.
    [98] J. Youn, P. Y. Huang, Y. W. Huang, M. C. Chen, Y. J. Lin, H. Huang, R. P. Ortiz, C. Stern, M. C. Chung, C. Y. Feng, L. H. Chen, A. Facchetti, T. J. Marks, Adv. Funct. Mater. 2012, 22, 48.
    [99] D. E. Janzen, M. W. Burand, P. C. Ewbank, T. M. Pappenfus, H. Higuchi, D. A. Da Silva Filho, V. G. Young, J. L. Brédas, K. R. Mann, J. Am. Chem. Soc. 2004, 126, 15295.
    [100] J. H. Dou, Y. Q. Zheng, T. Lei, S. D. Zhang, Z. Wang, W. Bin Zhang, J. Y. Wang, J. Pei, Adv. Funct. Mater. 2014, 24, 6270.
    [101] J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater 2014, 26, 5782.
    [102] A. C. J. Heinrich, B. Thiedemann, P. J. Gates, A. Staubitz, Org. Lett. 2013, 15, 4666.
    [103] F. Gohier, P. Frere, J. Roncali, J. Org. Chem. 2013, 78, 1497−1503.
    [104] S. R. Forrest, Nature 2004, 428, 911.
    [105] Q. Wu, S. Ren, M. Wang, X. Qiao, H. Li, X. Gao, X. Yang, D. Zhu, Adv. Funct. Mater. 2013, 23, 2277.
    [106] T. Lei, J. Wang, J. Pei, Chem. Mater 2014, 26, 594.
    [107] A. L. Briseno, Q. Miao, M. Ling, C. Reese, H. Meng, Z. Bao, F. Wudl, J. Am. Chem. Soc. 2006, 128, 15576.
    [108] Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, Y. Li, Angew. Chemie - Int. Ed. 2016, 55, 3459.
    [109] X. Guo, R. P. Ortiz, Y. Zheng, M. Kim, S. Zhang, Y. Hu, G. Lu, A. Facchetti, T. J. Marks, 2011, 13685.
    [110] T. D. Anthopoulos, G. C. Anyfantis, G. C. Papavassiliou, D. M. De Leeuw, Appl. Phys. Lett. 2007, 90.
    [111] H. Usta, C. Risko, Z. Wang, H. Huang, M. K. Deliomeroglu, A. Zhukhovitskiy, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2009, 131, 5586.
    [112] M. Ozdemir, D. Choi, G. Kwon, Y. Zorlu, B. Cosut, H. Kim, A. Facchetti, C. Kim, H. Usta, ACS Appl. Mater. Interfaces 2016, 8, 14077.
    [113] B. A. Jones, A. Facchetti, M. R. Wasielewski, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 15259.
    [114] Q. Ye, J. Chang, K. Huang, X. Shi, J. Wu, Org. Lett. 2013, 2011.
    [115] C. Wang, Y. Zang, Y. Qin, Q. Zhang, Y. Sun, C. Di, W. Xu, D. Zhu, Chem. - A Eur. J. 2014, 20, 13755.
    [116] Z. Yi, L. Ma, P. Li, L. Xu, X. Zhan, J. Qin, X. Chen, Y. Liu, S. Wang, Polym. Chem. 2015, 6, 5369.
    [117] H. Hwang, D. Khim, J. M. Yun, E. Jung, S. Y. Jang, Y. H. Jang, Y. Y. Noh, D. Y. Kim, Adv. Funct. Mater. 2015, 25, 1146.
    [118] S. C. Martens, U. Zschieschang, H. Wadepohl, H. Klauk, L. H. Gade, Chem. - A Eur. J. 2012, 18, 3498.
    [119] B. A. Jones, M. J. Ahrens, M. H. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angew. Chemie - Int. Ed. 2004, 43, 6363.
    [120] J. H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Würthner, Appl. Phys. Lett. 2007, 91.
    [121] R. Schmidt, M. M. Ling, J. H. Oh, M. Winkler, M. Könemann, Z. Bao, F. Würthner, Adv. Mater. 2007, 19, 3692.
    [122] X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, D. M. DeLongchamp, Nat. Commun. 2013, 4, 1.
    [123] C. Zhang, D. Yuan, H. Wu, E. Gann, L. Thomsen, C. R. McNeill, C. Di, X. Zhu, D. Zhu, J. Mater. Chem. C 2017.
    [124] Q. Wu, R. Li, W. Hong, H. Li, X. Gao, D. Zhu, Chem.Mater. 2011, 1.
    [125] M. Gsänger, E. Kirchner, M. Stolte, C. Burschka, V. Stepanenko, J. Pflaum, F. Würthner, J. Am. Chem. Soc. 2014.
    [126] X. Zhang, J. P. Johnson, J. W. Kampf, A. J. Matzger, Chem. Mater 2006, 18, 3470.
    [127] Q. Wu, X. Qiao, Q. Huang, J. Li, Y. Xiong, X. Gao, H. Li, RSC Adv. 2014, 4, 16939.
    [128] A. Moliton, R. C. Hiorns, Polym. Int. 2004, 53, 1397.
    [129] B. J. Cornil, D. Beljonne, J. Calbert, J. Brødas, J. Cornil, D. Beljonne, J. Calbert, J.-L. Brédas, Adv. Mater. 2001, 13, 1053.
    [130] F. Garnier, G. Horowitz, D. Fichou, Synth. Met. 1989, 28, 705.
    [131] Y. Suzuki, M. Shimawaki, E. Miyazaki, I. Osaka, K. Takimiya, Chem. Mater 2010, 23, 795.
    [132] G. Giri, S. Park, M. Vosgueritchian, M. M. Shulaker, Z. Bao, Adv. Mater. 2014, 26, 487.
    [133] J. H. Oh, W. Y. Lee, T. Noe, W. C. Chen, M. K??nemann, Z. Bao, J. Am. Chem. Soc. 2011, 133, 4204.
    [134] Y. Deng, B. Sun, J. Quinn, Y. He, J. Ellard, C. Guo, Y. Li, RSC Adv. 2016, 6, 45410.
    [135] Y. Suzuki, E. Miyazaki, K. Takimiya, 2010, 2010, 10453.
    [136] M. Nakano, I. Osaka, K. Takimiya, J. Mater. Chem. C 2015, 3, 283.
    [137] H. Zhong, J. Smith, S. Rossbauer, A. J. P. White, T. D. Anthopoulos, M. Heeney, Adv. Mater. 2012, 24, 3205.
    [138] Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem. Soc. 2012, 134, 4084.
    [139] H. Moon, R. Zeis, E.-J. Borkent, C. Besnard, A. J. Lovinger, T. Siegrist, C. Kloc, Z. Bao, J. Am. Chem. Soc. 2004, 126, 15322.
    [140] C. D. Sheraw, T. N. Jackson, D. L. Eaton, J. E. Anthony, Adv. Mater. 2003, 15, 2009.
    [141] A. L. Briseno, Q. Miao, M.-M. Ling, C. Reese, H. Meng, Z. Bao, F. Wudl, J. Am. Chem. Soc. 2006, 128, 15576.
    [142] M. D. Curtis, J. Cao, J. W. Kampf, J. Am. Chem. Soc. 2004, 126, 4318.
    [143] M. M. Payne, S. R. Parkin, J. E. Anthony, C. Kuo, T. N. Jackson, J. Am. Chem. Soc. 2005, 127, 4986.
    [144] A. Bondi, J. Phys. Chem. 1964, 68, 441.
    [145] S. S. Batsanov, Inorg. Mater. Transl. from Neorg. Mater. Orig. Russ. Text 2001, 37, 871.
    [146] S. R. Chaudhari, J. M. Griffin, K. Broch, A. Lesage, V. Lemaur, D. Dudenko, Y. Olivier, H. Sirringhaus, L. Emsley, C. P. Grey, Chem. Sci. 2017, 3126.
    [147] X. Liu, J. Huang, J. Xu, D. Gao, W. Zhang, K. Shi, G. Yu, RSC Adv. 2016, 6, 35394.
    [148] W. Y. Lee, G. Giri, Y. Diao, C. J. Tassone, J. R. Matthews, M. L. Sorensen, S. C. B. Mannsfeld, W. C. Chen, H. H. Fong, J. B. H. Tok, M. F. Toney, M. He, Z. Bao, Adv. Funct. Mater. 2014, 24, 3524.
    [149] H. A. Becerril, N. Miyaki, M. L. Tang, R. Mondal, Y.-S. Sun, A. C. Mayer, J. E. Parmer, M. D. McGehee, Z. Bao, J. Mater. Chem. 2009, 19, 591.
    [150] A. Tagaya, Y. Koike, Polym. J. 2012, 44, 306.
    [151] R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 2009, 11.
    [152] A. J. Lovinger, T. T. Wang, Polymer (Guildf). 1979, 20, 725.
    [153] R. Z. Rogowski, A. A. Darhuber, Langmuir 2010, 26, 11485.
    [154] C. W. Sele, B. K. Charlotte Kjellander, B. Niesen, M. J. Thornton, J. B. P. H. Van Der Putten, K. Myny, H. J. Wondergem, A. Moser, R. Resel, A. J. J. M. Van Breemen, N. Van Aerle, P. Heremans, J. E. Anthony, G. H. Gelinck, Adv. Mater. 2009, 21, 4926.
    [155] J. Shin, T. R. Hong, T. W. Lee, A. Kim, Y. H. Kim, M. J. Cho, D. H. Choi, Adv. Mater. 2014, 26, 6031.
    [156] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct. Mater. 2005, 15, 671.
    [157] J. Rivnay, a Salleo, S. Mannsfeld, C. Miller, M. Toney, Chem. Rev. 2012, 112, 5488.
    [158] Y. Huang, W. Huang, J. Yang, J. Ma, M. Chen, H. Zhu, W. Wang, Polym. Chem. 2016, 7, 538.
    [159] S. R. Forrest, Chem. Rev. 1997, 97, 1793.
    [160] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. a a Pettersson, O. Ingana, Macromolecules 2000, 33, 3120.
    [161] H. Li, F. S. Kim, G. Ren, S. A. Jenekhe, J. Am. Chem. Soc. 2013, 135, 14920.
    [162] R. Kim, P. S. K. Amegadze, I. Kang, H. J. Yun, Y. Y. Noh, S. K. Kwon, Y. H. Kim, Adv. Funct. Mater. 2013, 23, 5719.
    [163] I. Doi, E. Miyazaki, K. Takimiya, Y. Kunugi, Chem. Mater. 2007, 19, 5230.
    [164] H. Tian, J. Shi, D. Yan, L. Wang, Y. Geng, F. Wang, Adv. Mater. 2006, 18, 2149.
    [165] S. Nagamatsu, S. Oku, K. Kuramoto, T. Moriguchi, W. Takashima, T. Okauchi, S. Hayase, ACS Appl. Mater. Interfaces 2014, 6, 3847−3852.
    [166] C. Videlot-Ackermann, J. Ackermann, H. Brisset, K. Kawamura, N. Yoshimoto, P. Raynal, A. El Kassmi, F. Fages, J. Am. Chem. Soc. 2005, 127, 16346.
    [167] F. Paulus, J. U. Engelhart, P. E. Hopkinson, C. Schimpf, A. Leineweber, H. Sirringhaus,

    QR CODE
    :::