跳到主要內容

簡易檢索 / 詳目顯示

研究生: 芮可珊
Kekey Salsabil Azzahra
論文名稱: 多頻道表面波震測法與單站頻譜比法推論剪力波速度:特定場址地震危害度分析
Shear Wave Velocity Inferred from MASW and HVSR: A Game-Changer for Site-Specific PSHA
指導教授: 郭俊翔
Chun-Hsiang Kuo
詹忠翰
Chung-Han Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 245
中文關鍵詞: 剪力波速單站頻譜比多波道表面波分析法機率式地震危害評估
外文關鍵詞: Shear Wave Velocity, HVSR, MASW, PSHA
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究強調了平均剪力波速(VS30,指深度至30公尺的時間平均剪力波速)在理解地震事件中場址放大效應方面的重要角色,並將其應用於印尼西蘇拉威西馬穆朱市的都市尺度機率式地震危害評估(PSHA)。VS30 是透過現場量測,包括多波道表面波分析法(MASW)與單站頻譜比法(HVSR)所獲得。MASW數據用於獲取相速度的頻散曲線,而HVSR則是利用微地動資料計算。之後再根據頻散曲線和/或HVSR進行速度剖面的逆推。針對小於30公尺的剪力波速度剖面,採用外推法估算其VS30。
    進行機率式地震危害評估(PSHA)需對地震活動有全面理解。傳統PSHA假設地震事件彼此獨立,因此,本研究整合國際地震中心(ISC)1976年至2009年與印尼氣象、氣候暨地球物理局(BMKG)2009年至2023年的地震目錄,並透過去群集程序剔除前震與餘震。在考慮規模完備性之後,僅納入規模Mw ≥ 4.6的地震事件進行分析。
    為了更準確地表達淺層地殼地震活動,本研究提出區域震源模型與平滑模型的組合,以降低認知性不確定性。在評估斷層破裂機率時,並考量自上次破裂以來的時間因素,本研究採用了布朗運動通過時間(BPT)模型。地動預估方程式(GMPE)則選用NGA-West2模型,並將其估算結果與2021年發生於研究區域的Mw 6.2馬穆朱地震的RotD50觀測數據進行比較。接著,依據歐氏距離排名(EDR)指標對GMPE進行權重排序。
    最後,綜合由地形坡度、地貌分類以及現地量測所獲得的VS30數據,建立都市尺度的地震危害地圖,提供工程師與決策者用於加強地震災害緩減策略的參考依據。


    This study highlights the critical role of time-average shear wave velocity to 30 meters depth (VS30) in understanding site amplification during seismic events, applying it to urban-scale probabilistic seismic hazard assessment (PSHA) for Mamuju, West Sulawesi, Indonesia. VS30 was determined through field measurements using multichannel analysis of surface waves (MASW) and horizontal-to-vertical spectral ratio (HVSR). Dispersion curves of phase velocity have been derived from MASW data, while HVSR curves have been computed using microtremor data. Inversion for VS profiles was performed using dispersion curves and/or HVSR. Extrapolation of VS30 was applied for several VS profiles less than 30 meters. Conducting a PSHA requires a thorough understanding of seismic activity. A traditional PSHA rests on the assumption that earthquakes are independent of each other; therefore, combination of seismic catalogs from International Seismological Centre (1976-2009) and Indonesian Agency for Meteorological, Climatological and Geophysics (2009-2023) were initially declustered to remove foreshocks and aftershocks. Considering the magnitude of completeness, only events with Mw ≥ 4.6 were included in the analysis. To represent shallow crustal seismic activity, this study proposed a combination of an area source model and a smoothing model to reduce epistemic uncertainty. To accurately estimate fault rupture probability while accounting for the time elapsed since the last rupture, this study employed the Brownian passage time (BPT) model. Ground motion prediction equations (GMPEs) from NGA-West2 were examined by comparing the estimated ground shaking with the RotD50 observations of the 2021 Mw 6.2 Mamuju Earthquake that occurred in the study region. GMPEs were then weighted based on the Euclidean distance-based ranking (EDR) index. VS30 maps derived from topographic slope, geomorphology, and field measurements were integrated to develop a city-scale hazard map, providing outcomes that engineers and stakeholders can use to improve seismic hazard mitigation strategies.

    CHINESE ABSTRACT i ENGLISH ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENT iv LIST OF FIGURES vi LIST OF TABLES xi LIST OF ABBREVIATIONS xii CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Objective of the Thesis 2 1.3 Previous Studies 2 1.4 Outline 3 CHAPTER II SURFACE WAVE ANALYSIS 12 2.1 MASW 13 2.1.1 Data Acquisition 13 2.1.2 Dispersion Analysis 14 2.2 HVSR 15 2.2.1 Data Acquisition 16 2.2.2 HVSR Curve 17 2.3 Inversion 18 2.4 Extrapolation of VS30 22 CHAPTER III PROBABILISTIC SEISMIC HAZARD ASSESSMENT 37 3.1 Method 37 3.2 Catalog Dataset 38 3.2.1 Magnitude Conversion 39 3.2.2 Declustering 39 3.2.3 Catalog of Completeness 40 3.3 Seismic Source 41 3.3.1 Active Fault Source 41 3.3.2 Shallow-Background Source 43 3.4 Site Effect 45 3.5 GMPE Testing 47 3.6 Logic Tree Branches 49 CHAPTER IV RESULTS AND DISCUSSIONS 70 4.1 Time-Averaged Shear Wave Velocity 70 4.1.1 MASW Result 70 4.1.2 HVSR Result 72 4.1.3 Joint Inversion Result 74 4.2 Outcomes of PSHA 75 4.2.1 Hazard Map 75 4.2.2 Site Effect Contribution 77 4.2.3 Hazard Curve 78 CHAPTER V CONCLUSIONS, LIMITATIONS, AND SUGGESTIONS 129 5.1 Conclusions 129 5.2 Limitations and Suggestions 130 BIBLIOGRAPHY 132 APPENDICES 145

    Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M
    Aki, K. (1965). Maximum likelihood estimate of b in the formula log N = a – bm and its confidence limits. Bulletin of the Earthquake Research Institute, 43, 237–239.
    Allen, T. I., & Wald, D. J. (2009). On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bulletin of the Seismological Society of America, 99(2A), 935–943.
    Amaru, M. L. (2007). Global travel time tomography with 3-D reference models [Doctoral dissertation, Utrecht University]. Utrecht University Repository. https://dspace.library.uu.nl/handle/1874/19338
    Arai, H., & Tokimatsu, K. (2005). S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bulletin of the Seismological Society of America, 95(5), 1766-1778.
    Arsyad, A., Amaliyah, A. A. N., Paerong, S., Djamaluddin, A. R. (2022). Liquefaction potential assessment for the city of Mamuju Sulawesi by using N-SPT based methods. Indonesian Geotechnical Journal, 1(3), 37–55. https://doi.org/10.56144/igj.v1i3.28
    Bas, E. E., Seylabi, E., Yong, A., Tehrani, H., & Asimaki, D. (2022). P- and S-wave velocity estimation by ensemble Kalman inversion of dispersion data for strong motion stations in California. Geophysical Journal International, 231(1), 536–551
    BMKG. (2023). Event catalog. Agency for Meteorology, Climatology and Geophysics. https://repogempa.bmkg.go.id/eventcatalog
    Boore, D. M. (2004). Estimating Vs (30) (or NEHRP site classes) from shallow velocity models (depths ≤ 30 m). Bulletin of the Seismological Society of America, 94(2), 591–597.
    Boore, D. M., & Asten, M. W. (2008). Comparisons of shear-wave slowness in the Santa Clara Valley, California, using blind interpretations of data from invasive and noninvasive methods. Bulletin of the Seismological Society of America, 98(4), 1983–2003
    Boore, D. M., & Brown, L. T. (1998). Comparing shear-wave velocity profiles from inversion of surface-wave phase velocities with downhole measurements: Systematic differences between the CXW method and downhole measurements at six USC strong-motion sites. Seismological Research Letters, 69(3), 222–229.
    Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M
    Borcherdt, R. D. (Ed.). (1994). The Loma Prieta, California, earthquake of October 17, 1989: Strong ground motion and ground failure (U.S. Geological Survey Professional Paper 1551-A). U.S. Government Printing Office.
    Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bulletin of the Seismological Society of America, 95(6), 2081–2092. https://doi.org/10.1785/0120050077
    Brown, L. T., Boore, D. M., & Stokoe, K. H. (2002). Comparison of shear-wave slowness profiles at 10 strong-motion sites from noninvasive SASW measurements and measurements made in boreholes. Bulletin of the Seismological Society of America, 92(8), 3116–3133
    Building Seismic Safety Council. (2003). NEHRP recommended provisions for seismic regulations for new buildings and other structures: Part 1 – Provisions (FEMA 368). Federal Emergency Management Agency.
    Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1114. https://doi.org/10.1193/062913EQS175M
    Castellaro, S. (2016). The complementarity of H/V and dispersion curves. Geophysics, 81, T323–T338. https://doi.org/10.1190/geo2015-0399.1
    Chan, C. H. (2016). Importance of three-dimensional grids and time-dependent factors for applications of earthquake forecasting models to subduction environments. Natural Hazards and Earth System Sciences, 16(9), 2177–2187. https://doi.org/10.5194/nhess-16-2177-2016
    Chan, C. H., Ma, K. F., Lee, Y. T., & Wang, Y. J. (2019). Rethinking seismic source model of probabilistic hazard assessment in Taiwan after the 2018 Hualien, Taiwan, earthquake sequence. Seismological Research Letters, 90(1), 88–96.
    Chan, C. H., Ma, K. F., Shyu, J. B. H., Lee, Y. T., Wang, Y. J., Gao, J. C., Yen, Y. T., & Rau, R. J. (2020). Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36(1_suppl), 137–159. https://doi.org/10.1177/8755293020951587
    Chan, C. H., Wang, Y., Wang, Y. J., & Lee, Y. T. (2017). Seismic-hazard assessment over time: Modeling earthquakes in Taiwan. Bulletin of the Seismological Society of America, 107(5), 2342–2352. https://doi.org/10.1785/0120160278
    Chandler, A., Pomonis, A., & Earthquake Engineering Field Investigation Team (EEFIT). (1997). The Hyogo-Ken Nanbu (Kobe) earthquake of 17 January 1995: A field report by EEFIT. The Institution of Structural Engineers.
    Cheng, C.T., Hsieh, P.S., Lin, P.S., Yen, Y.T., & Chan, C.H. (2015). Probability seismic hazard mapping of Taiwan. In Encyclopedia of earthquake engineering (pp. 1–25). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_100-1
    Chiou, B. S. J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813EQS219M
    Cipta, A., Solikhin, A., Priambodo, I., Robiana, R., & Afif, H. (2022). Indonesian VS30 local site atlas 2022 – First edition. Geological Agency, Ministry of Energy and Mineral Resources of the Republic of Indonesia. https://github.com/cheathanasius/ATLAS_VS30_INA
    Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606. https://doi.org/10.1785/BSSA0580051583
    Cosentino, P., Ficarra, V., & Luzio, D. (1977). Truncated exponential frequency-magnitude relationship in earthquake statistics. Bulletin of the Seismological Society of America, 67(6), 1615–1623. https://doi.org/10.1785/BSSA0670061615
    Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., & Giardini, D. (2021). The 2020 update of the European Seismic Hazard Model: Model overview (EFEHR Technical Report 001, v1.0.0). https://doi.org/10.12686/a15
    Ellsworth, W. L., Matthews, M. V., Nadeau, R. M., Nishenko, S. P., Reasenberg, P. A., & Simpson, R. W. (1999). A physically based earthquake recurrence model for estimation of long-term earthquake probabilities (U.S. Geological Survey Open-File Report 99–522, pp. 1–12).
    Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P. Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., & Socco, V. (2018). Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project. Original Research Paper, 16, 2367–2420.
    Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seismological Research Letters, 66(4), Article 4. https://doi.org/10.1785/gssrl.66.4.8
    Fujiwara, H. (2014). Seismic hazard maps for Japan (pp. 1–28). https://doi.org/10.1007/978-3-642-27737-5_617-1
    Fujiwara, H., Kawai, S., Aoi, S., Morikawa, N., Senna, S., Kudo, N., Ooi, M., Hao, K. X., Wakamatsu, K., Ishikawa, Y., Okumura, T., Ishii, T., Matsushima, S., Hayakawa, Y., Toyama, N., & Narita, A. (2009). Technical reports on national seismic hazard maps for Japan (Report No. 336). National Research Institute for Earth Science and Disaster Resilience (NIED).
    García-Jerez, A., Luzón, F., Sánchez-Sesma, F. J., Lunedei, E., Albarello, D., Santoyo, M. A., & Almendros, J. (2013). Diffuse elastic wavefield within a simple crustal model: Some consequences for low and high frequencies. Journal of Geophysical Research: Solid Earth, 118(10), 5577–5595. https://doi.org/10.1002/2013JB010107
    García-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F. J., Luzón, F., & Perton, M. (2016). A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Computers & Geosciences, 97, 67–78. https://doi.org/10.1016/j.cageo.2016.06.016
    García-Jerez, A., Seivane, H., Navarro, M., Martínez-Segura, M., & Piña-Flores, J. (2019). Joint analysis of Rayleigh-wave dispersion curves and diffuse-field HVSR for site characterization: The case of El Ejido town (SE Spain). Soil Dynamics and Earthquake Engineering, 121, 102–120. https://doi.org/10.1016/j.soildyn.2019.02.023
    Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.
    Geometrics, Inc. (2009). SeisImager/SW™ manual: Windows software for analysis of surface waves (Version 3.0). Geometrics, Inc.
    Gorstein, M., & Ezersky, M. (2015). Combination of HVSR and MASW methods to obtain shear wave velocity model of subsurface in Israel. International Journal of Geohazards and Environment, 1(1), 20–41. https://doi.org/10.15273/ijge.2015.01.004
    Gregor, N., Abrahamson, N. A., Atkinson, G. M., Boore, D. M., Bozorgnia, Y., Campbell, K. W., Chiou, B. S.-J., Idriss, I. M., Kamai, R., Seyhan, E., Silva, W., Stewart, J. P., & Youngs, R. (2014). Comparison of NGA-West2 GMPEs. Earthquake Spectra, 30(3), 1179–1197. https://doi.org/10.1193/070113EQS186M
    Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188. https://doi.org/10.1785/BSSA0340040185
    Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021
    Hall, R., & Spakman, W. (2015). Mantle structure and tectonic history of SE Asia. Tectonophysics, 658, 14–45. https://doi.org/10.1016/j.tecto.2015.07.003
    Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348
    Hartzell, S. (1998). Variability in nonlinear sediment response during the 1994 Northridge, California earthquake. Bulletin of the Seismological Society of America, 88(6), 1426–1437. https://doi.org/10.1785/BSSA0880061426
    Imai, T. (1977). P- and S-wave velocities of the ground in Japan. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, 2, 257–260
    Imai, T., & Tonouchi, K. (1982). Correlation of N-value with S-wave velocity and shear modulus. Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam, The Netherlands, 67–72.
    International Seismological Centre. (2023). On-line bulletin. https://doi.org/10.31905/D808B830
    Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl), 112–136. https://doi.org/10.1177/8755293020951206
    Kale, Ö., & Akkar, S. (2013). A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): The Euclidean Distance-Based Ranking (EDR) method. Bulletin of the Seismological Society of America, 103(2A), 1069–1084. https://doi.org/10.1785/0120120134
    Keskinsezer, A., Karaaslan, H., Silahtar, A., & Beyhan, G. (2023). The soil characterization of the region between the Maltepe-Beykoz Fault and the Marmara Sea in İstanbul (Türkiye) with the integrated HVSR (Nakamura technique) and MASW method. Journal of Applied Geophysics, 219, 105245. https://doi.org/10.1016/j.jappgeo.2023.105245
    Konno, K., & Ohmachi, T. (1998). Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors. Bulletin of the Seismological Society of America, 88(1), 228–241.
    Kuo, C.H., Chen, C.T., Lin, C.M., Wen, K.L., Huang, J.Y., & Chang, S.C. (2016). S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan. Journal of Asian Earth Sciences, 128, 27–41.
    Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., & Kuo, K. (2012). Site classification and VS30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129–130, 68–75.
    Mahajan, A. K., Mundepi, A. K., Chauhan, N., Jasrotia, A. S., Rai, N., & Gachhayat, T. K. (2012). Active seismic and passive microtremor HVSR for assessing site effects in Jammu city, NW Himalaya, India—A case study. Journal of Applied Geophysics, 77, 51–62. https://doi.org/10.1016/j.jappgeo.2011.11.005
    Meteorology, Climatology, and Geophysics Agency. (2024). Catalog of damaging earthquakes 1821–2023. BMKG.
    Molchan, G. M. (1990). Strategies in strong earthquake prediction. Physics of the Earth and Planetary Interiors, 61, 84–98.
    Mosegaard, K., & Tarantola, A. (1995). Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth, 100(B7), 12431–12447.
    Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI (Railway Technical Research Institute), 30(1), 25–33.
    Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part 1—A discussion of principles. Journal of Hydrology, 10, 282–290.
    National Earthquake Study Center (PuSGeN). (2017). The 2017 Indonesian earthquake hazard and source model. Ministry of Public Works and Housing, Republic of Indonesia.
    National Institute of Standards and Technology. (2020). NEHRP recommended provisions for seismic regulations for new buildings and other structures: Part 1 – Provisions (FEMA P-1050-1). Federal Emergency Management Agency.
    National Standardization Agency of Indonesia. (2019). SNI 1726:2019 – Seismic resistance design code for buildings and non-building structures. National Standardization Agency of Indonesia.
    Nazarian, S., & Stokoe, K. H. II. (1984). In situ shear wave velocity from spectral analysis of surface waves. In Proceedings of the 8th Conference on Earthquake Engineering (Vol. 3, pp. 31–38). Prentice–Hall, Inc.
    Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7, 308–313.
    Nugraha, A. M. S., & Hall, R. (2018). Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 191–209. https://doi.org/10.1016/j.palaeo.2017.10.033
    Ohta, Y., & Goto, N. (1978). Empirical shear wave velocity equation in terms of characteristic soil indexes. Earthquake Engineering & Structural Dynamics, 6(2), 167–187. https://doi.org/10.1002/eqe.4290060205
    Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., & Vigano, D. (2014). OpenQuake engine: An open hazard (and risk) software for the Global Earthquake Model. Seismological Research Letters, 85(3), 692–702. https://doi.org/10.1785/0220130087
    Park, C. B., Miller, R. D., & Xia, J. (1997). Multi-channel analysis of surface waves (MASW): A summary report of technical aspects, experimental results, and perspective (Open-File Report No. 97-10). Kansas Geological Survey.
    Park, C. B., Miller, R. M., & Xia, J. (1996). Multi-channel analysis of surface waves using vibroseis. In 66th Annual Meeting of the Society of Exploration Geophysicists, Denver, Expanded Abstracts (pp. 68–71).
    Park, C. B., Miller, R. M., & Xia, J. (1998). Imaging dispersion curves of surface waves on multi-channel record. SEG Technical Program Expanded Abstracts, 1377–1380.
    Park, C. B., Miller, R. M., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800–808.
    Picozzi, M., Parolai, S., & Richwalski, S. (2005). Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S-wave velocity of bedrock. Geophysical Research Letters, 32. https://doi.org/10.1029/2005GL022878
    Piña-Flores, J., Perton, M., García-Jerez, A., Carmona, E., Luzón, F., Molina-Villegas, J. C., & Sánchez-Sesma, F. J. (2017). The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA). Geophysical Journal International, 208, 577–588. https://doi.org/10.1093/gji/ggw416
    Ratman, N., & Atmawinata, S. (1993). Geological map of the Mamuju quadrangle 2013, West Sulawesi (1:250.000 scale). Center for Geological Resources, Geological Agency, Ministry of Energy and Mineral Resources.
    Reid, J.A., & Mooney, W.D. (2022). Tsunami occurrence 1900–2020: A global review, with examples from Indonesia. Pure and Applied Geophysics, 180. https://doi.org/10.1007/s00024-022-03057-1
    Rezaeian, S., Petersen, M. D., Moschetti, M. P., Powers, P., Harmsen, S. C., & Frankel, A. D. (2014). Implementation of NGA-West2 ground motion models in the 2014 U.S. national seismic hazard maps. Earthquake Spectra, 30(3), 1319–1333. https://doi.org/10.1193/062913EQS177M
    Ridwan, M., Cummins, P. R., Widiyantoro, S., & Irsyam, M. (2019). Site characterization using microtremor array and seismic hazard assessment for Jakarta, Indonesia. Bulletin of the Seismological Society of America, 109(6). https://doi.org/10.1785/0120190040
    Rix, G. J., & Leipski, A. E. (1991). Accuracy and resolution of surface wave inversion. In S. K. Bhatia & G. W. Blaney (Eds.), Recent advances in instrumentation, data acquisition and testing in soil dynamics (Geotechnical Special Publication No. 28, pp. 17–23). American Society of Civil Engineers.
    Rix, G. J., Hebeler, G. L., & Orozco, M. C. (2002). Near-surface Vs profiling in the New Madrid Seismic Zone using surface-wave methods. Seismological Research Letters, 73(3), 380–392. https://doi.org/10.1785/gssrl.73.3.380
    Sánchez-Sesma, F. J., Rodríguez, M., Iturrarán-Viveros, U., Luzón, F., Campillo, M., Margerin, L., García-Jerez, A., Suárez, M., Santoyo, M. A., & Rodríguez-Castellanos, A. (2011). A theory for microtremor H/V spectral ratio: Application for a layered medium. Geophysical Journal International, 186, 221–225.
    Scherbaum, F., Cotton, F., & Smith, P. (2004). On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: The case of rock motion. Bulletin of the Seismological Society of America, 94(6), 2164–2185.
    Scordilis, E. M. (2005). Globally valid relations converting Ms, mb and MJMA to Mw. NATO Advanced Research Workshop on Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries, Borovetz, Rila Mountain, Bulgaria. Retrieved from https://www.researchgate.net/publication/292771405
    Senna, S., Wakai, A., Suzuki, H., Yatagai, A., Matsuyama, H., & Fujiwara, H. (2018). Modeling of the subsurface structure from the seismic bedrock to the ground surface for a broadband strong motion evaluation in Kumamoto Plain. Journal of Disaster Research, 13(5), 917–927.
    Serhalawan, Y., & Chen, P. F. (2024). Seismotectonics of Sulawesi, Indonesia. Tectonophysics, 883, 230366. https://doi.org/10.1016/j.tecto.2024.230366
    SESAME European Research Project. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: Measurements, processing, and interpretation (SESAME Project Deliverable D23.12). European Commission – Research General Directorate.
    Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72(5), 1677–1687. https://doi.org/10.1785/BSSA0720051677
    Shtivelman, V. (1999). Using surface waves for estimating the shear-wave velocities in the shallow subsurface onshore and offshore Israel. European Journal of Environmental and Engineering Geophysics, 4, 17–36.
    Shtivelman, V. (2003). Using surface waves for studying the shallow subsurface. Bollettino di Geofisica Teorica ed Applicata, 44(3–4), 223–236.
    Singh, A. P., Annam, N., & Kumar, S. (2014). Assessment of predominant frequencies using ambient vibration in the Kachchh region of western India: Implications for earthquake hazards. Natural Hazards, 73, 1291–1309. https://doi.org/10.1007/s11069-014-1135-2
    Sivaram, K., Gupta, S., Kumar, S., & Prasad, B. (2018). Shear velocity structural characterization around the Lonar crater using joint inversion of ambient noise HVSR and Rayleigh wave dispersion. Journal of Applied Geophysics, 159, 773–784. https://doi.org/10.1016/j.jappgeo.2018.10.022
    Smolka, A., & Berz, G. (1989). The Mexico earthquake of September 19, 1985—An analysis of the insured loss and implications for risk assessment. Earthquake Spectra, 5(1), 223–248.
    Socco, L. V., & Strobbia, C. (2004). Surface-wave method for near-surface characterization: A tutorial. Near Surface Geophysics, 2, 165–185.
    Spica, Z., Perton, M., Nakata, N., Liu, X., & Beroza, G. C. (2018). Shallow Vs imaging of the Groningen area from joint inversion of multimode surface waves and H/V spectral ratios. Seismological Research Letters, 89(5), 1720–1729. https://doi.org/10.1785/0220180060
    Stephenson, W. J., Louie, J. N., Pullammanappallil, S., Williams, R., & Odum, J. K. (2005). Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment. Bulletin of the Seismological Society of America, 95(6), 2506–2516
    Storchak, D. A., Harris, J., Brown, L., Lieser, K., Shumba, B., & Di Giacomo, D. (2020). Rebuild of the Bulletin of the International Seismological Centre (ISC), part 2: 1980–2010. Geoscience Letters, 7, 18. https://doi.org/10.1186/s40562-020-00164-6
    Storchak, D. A., Harris, J., Brown, L., Lieser, K., Shumba, B., Verney, R., Di Giacomo, D., & Korger, E. I. M. (2017). Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964–1979. Geoscience Letters, 4, 32. https://doi.org/10.1186/s40562-017-0098-z
    Supendi, P., Ramdhan, M., Priyobudi, Sianipar, D., Wibowo, A., Gunawan, M. T., Rohadi, S., Riama, N. F., Daryono, Prayitno, B. S., Murjaya, J., Karnawati, D., Meilano, I., Rawlinson, N., Widiyantoro, S., Nugraha, A. D., Marliyani, G. I., Palgunadi, K. H., & Elsera, E. M. (2021). Foreshock–mainshock–aftershock sequence analysis of the 14 January 2021 (Mw 6.2) Mamuju–Majene (West Sulawesi, Indonesia) earthquake. Earth, Planets and Space, 73(1), 106. https://doi.org/10.1186/s40623-021-01436-x
    Tehrani, H., Lavrentiadis, G., Seylabi, E., McCallen, D., & Asimaki, D. (2023). Towards a three-dimensional geotechnical layer model for Northern California: Collaborative research with the University of Nevada Reno and California Institute of Technology (Final Technical Report 2021–2022). U.S. Geological Survey
    Thein, P. S., Pramumijoyo, S., Brotopuspito, K. S., Kiyono, J., Wilopo, W., Furukawa, A., Setianto, A., & Putra, R. R. (2015). Estimation of S-wave velocity structure for sedimentary layered media using microtremor array measurements in Palu City, Indonesia. Procedia Environmental Sciences, 28, 595–605. https://doi.org/10.1016/j.proenv.2015.07.070
    Van Stiphout, T., Zhuang, J., & Marsan, D. (2012). Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis, 25. https://doi.org/doi:10.5078/corssa52382934
    Vantassel, J. P., Ilgac, M., Zekkos, A. A., Yong, A., Hassani, B., & Martin, A. J. (2024). Are the horizontal-to-vertical spectral ratios of earthquakes and microtremors the same? Bulletin of the Seismological Society of America. Advance online publication. https://doi.org/10.1785/0120240039
    Wald, D. J., and Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97(5), 1379-1395.
    Wang Y. J., Chan C. H., Lee Y. T., Ma K. F., Shyu J. B. H., & Rau R. J. (2016a) Probabilistic seismic hazard assessments for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 325–340.
    Wang Y. J., Lee Y. T., Chan C. H., & Ma K. F. (2016b) An investigation of the reliability of the Taiwan Earthquake Model PSHA2015. Seismological Research Letters, 87(6), 1287–1298.
    Weatherill, G. A. (2014). OpenQuake Hazard Modeller’s Toolkit—User guide (Technical Report). Global Earthquake Model (GEM). https://www.globalquakemodel.org/gempublications/openquake-hazard-modeller's-toolkit---userguide
    Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002. https://doi.org/10.1785/BSSA0840040974
    Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382. https://doi.org/10.1785/gssrl.72.3.373
    Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869. https://doi.org/10.1785/0119990114
    Wills, C. J., Gutierrez, C. I., Perez, F. G., & Branum, D. M. (2015). A next generation VS30 map for California based on geology and topography. Bulletin of the Seismological Society of America, 105(6), 3083–3091. https://doi.org/10.1785/0120150105
    Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698. https://doi.org/10.1785/0120040007
    Xhafaj, E., Chan, C. H., & Ma, K. F. (2024). Earthquake forecasting model for Albania: The area source model and the smoothing model. Natural Hazards and Earth System Sciences, 24(1), 109-119. https://doi.org/10.5194/nhess-24-109-2024
    Xia, J., Miller, R. D., & Park, C. B. (1999). Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave. Geophysics, 64(3), 691–700. https://doi.org/10.1190/1.1444578
    Yamada, M., Cho, I., Kuo, C. H., Lin, C. M., Miyakoshi, K., Guo, Y., Hayashida, T., Matsumoto, Y., Mori, J., Yen, Y. T., Kuo, K. C. (2020). Shallow subsurface structure in Hualien Basin and the relevance to the damage pattern and fault rupture during the 2018 Hualien earthquake. Bulletin of Seismological Society of America, 110(6), 2939–2952.
    Yang, H. B., Chang, Y. K., Liu, W., Sung, G. Y., Gao, J. C., Thant, M., Maung Maung, P., & Chan, C. H. (2023). Probabilistic seismic hazard assessments for Myanmar and its metropolitan areas. Geoscience Letters, 10(1), 48. https://doi.org/10.1186/s40562-023-00301-x

    QR CODE
    :::