| 研究生: |
王友為 You-Wei Wang |
|---|---|
| 論文名稱: |
以離心模型試驗探討凹形邊坡之穩定性 |
| 指導教授: |
王瑞斌
Jui-Pin Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 邊坡穩定 、凹形邊坡 、地震 、離心模型 |
| 外文關鍵詞: | slope stability, concave slope, earthquake, centrifuge modeling |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
平面邊坡已在大地工程中被廣泛研究與使用,然而在自然界中可以觀察到一些具有凹形輪廓的邊坡,此證據表明凹形邊坡可能是更穩定的結構,近幾年的研究也透過數值模擬與物理模型實驗支持此論點。為了進一步探討凹形邊坡之穩定性,本研究使用中央大學地工離心機進行離心模型試驗,在靜態與動態試驗中觀察凹形邊坡與平面邊坡之破壞行為並分析。試驗之邊坡皆由70% 石英矽砂混合30% 高嶺土於最佳含水量下夯實而成,坡角為70o,凹形邊坡之坡面幾何條件由圓弧定義。靜態試驗中,利用人造重力場逐漸增加試體內部之重力,直至邊坡達到臨界坡高而誘發破壞;動態試驗中,在40 g穩定重力場下輸入數個振動事件直至邊坡達到破壞,觀察滑動塊體位移量與破壞行為。
由試驗結果得知:(1) 靜態試驗中,平面邊坡於45 g產生張力裂縫,凹形邊坡則於50 g產生裂縫。平面邊坡能達到臨界坡高約為12.10 m;凹形邊坡之臨界坡高約為13.86 m。試驗結果顯示坡面幾何條件在靜態下會影響邊坡之穩定性,其中凹形較為穩定。(2) 動態試驗中,透過位移量-振動事件歷時與影像進行分析,凹形邊坡能承受之振動事件較多,且極限位移量為為平面邊坡之1.35倍。由此判斷地震狀態下,凹形邊坡仍是較穩定之配置。
Planar slopes are widely studied in geotechnical engineering. However, some slopes with concave profiles were observed in the field. The phenomenon implies that concave slopes might be a more stable configuration in nature, and recent studies have supported this theory through numerical simulations and physical models. In order to further discuss the stability of concave slopes, several centrifuge modeling tests were conducted in this study by geotechnical centrifuge of NCU, and the failure behaviors in static and dynamic tests can be observed.
The results show that: (1) In the static test, the tension crack appeared earlier on the top of planar slope. The critical height of the planar slope can reach to 12.10 m, and the concave one is about 13.86 m. The result shows that the geometric condition would affect the stability of the slope under static conditions, and the concave shape is more stable than planar one. (2) In the dynamic test, the concave slope can bear more shaking events, and the allowable displacement is 1.35 times as much as planar one. Therefore, as other studies, this research also shows that the concave slope is a more stable configuration than planar slope under the seismic or static condition.
[1] Abramson, L. W., Lee, T. S., Sharma, S., and Boyce, G. M., Slope stability and stabilization methods, John Wiley & Sons (2001).
[2] Das, B., and Sobhan, K, Principles of Geotechnical Engineering, 8th edition., Cengage Learning (2016).
[3] Duncan, J. M., Wright, S. G., and Brandon, T. L., Soil strength and slope stability, John Wiley & Sons (2014).
[4] Fredlund, D. G., and Krahn, J., “Comparison of slope stability methods of analysis,” Canadian geotechnical journal, Vol. 14, No. 3, pp. 429-439 (1977).
[5] Gray, D. H, “Influence of slope morphology on the stability of earthen slopes,” Geo-Congress 2013: Stability and Performance of Slopes and Embankments III, pp. 1895-1904 (2013).
[6] Minh-Canh Tran,「Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake」,碩士論文,國立中央大學土木工程學系,中壢(2017)。
[7] Palmer, S., and Jacka, M., “Newmark block model of seismic displacement of a slope. A valid model for slopes restrained by structural elements?” New Zealand Geotechnical Society Symposium (2008).
[8] Sokolovskiĭ, V. V., Statics of soil media., Butterworths Scientific Publications (1960).
[9] Steward, T., Sivakugan, N., Shukla, S. K., and Das, B. M, “Taylor’s slope stability charts revisited,” International Journal of Geomechanics, Vol. 11, No. 4, pp. 348-352 (2011).
[10] Taylor, R.N., Geotechnical centrifuge technology, 1st edition., CRC Press (1995).
[11] Utili, S., and Nova, R., “On the optimal profile of a slope,” Soils and foundations, Vol. 47, No. 4, pp. 717-729 (2007).
[12] Utili, S., and Crosta, G. B., “Modeling the evolution of natural cliffs subject to weathering: 1. Limit analysis approach,” Journal of Geophysical Research: Earth Surface, Vol. 116, F1 (2011).
[13] Vahedifard, F., Shahrokhabadi, S., and Leshchinsky, D., “Optimal profile for concave slopes under static and seismic conditions,” Canadian geotechnical journal, Vol. 53, No. 9, pp. 1522-1532 (2016).
[14] Varnes, D. J., “Slope movement types and processes,” Special Report, Vol. 176, pp. 11-33 (1978).
[15] Wilson, R. C., and Keefer, D. K., “Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake,” Bulletin of the Seismological Society of America, Vol. 73, No. 3, pp. 863-877 (1985).
[16] 黃紀禎,「地震引致邊坡滑移之分析」,碩士論文,國立臺灣大學土木工程學系,台北市(2003)。