跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉俊佑
Chun-Yu Liu
論文名稱: Generating Faraday rogue waves through particle focusing by the surrounding waves
指導教授: 伊林
Lin I
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 44
中文關鍵詞: 法拉第波極高振幅偶發突波預測指標
外文關鍵詞: Faraday wave
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 突波為時空間突發的非確定局域超高振幅波 (extreme amplitude wave
    event),廣存於各類非線性失穩波系統,例如:法拉第波、水面波、非線性
    介質中的光波和微粒電漿聲波,生活中常見於海洋上的瘋狗浪 (rogue
    wave)。過去的研究指出極高振幅偶發突波源於調制非穩性 (modulation
    instability) 而產生如孤立子般的超高振幅調制波包,而突波研究為近年來
    非線性波動研究的重要議題,突波形成是否具有與如何尋得預警指標,為
    爭議性的重要問題。
    此篇論文將探討非線性法拉第波因外界上下振動之驅動振幅增加而失
    穩後,所形成時空上突發之不穩定突波,找出預警指標 (precursor),並從
    波動與粒子間交互作用 (wave-particle interaction) 的觀點重新了解水流如
    何造成時空突波。此研究發現極高振幅偶發突波的產生取決於時空周遭波
    型變化,在極高振幅偶發突波發生的前數週,環繞突波的波峰環場稜線
    (preceding surrounding water ridge) 積分高度和波峰環場稜線高度的離散程
    度為重要的突波生成預警條件。此外更發現在類晶格排列的法拉第波系統
    中,極高振幅偶發突波的產生和前數週波峰環場稜線的高階鍵角取向有序
    度 (high-order bond orientational order) 並無直接的關聯。透過時空上波形
    的演化資訊,波峰環場稜線的積分高度為極高振幅偶發突波生成的重要預
    警指標。


    The uncertainly occurred and highly localized extreme amplitude rare event,
    called rogue wave event, occurs in various nonlinear systems such as Faraday
    waves, water surface waves, optical waves, and dust acoustic waves in plasma.
    Modulation instability, causing wave-amplitude modulation and the formation
    of amplitude soliton-like structure, has been widely accepted as the underlying
    mechanism for rogue wave generation. However, how the generation mechanism
    for extreme wave events can be understood from the Lagrangian view and
    whether the precursors can be identified are still open issues. In this work, the
    generation and the precursors of rogue wave events are experimentally
    investigated through a Faraday water wave system exhibiting disordered oscillon
    pattern. The above issues are addressed from wave-particle interaction view by
    using the surrounding waveform information preceding the rogue wave events.
    It is found that the oscillon peak height is correlated with high angular
    average and the low standard deviation of its prior surrounding waveform, but
    uncorrelated with preceding waveform with high-order orientational symmetries.
    The preceding water ridge with high angular average and the low standard
    deviation of ridge height is the key to determining the strong inward water
    focusing, which further leads to the subsequent rogue wave generation. The
    angular average normalized by the standard deviation of the surround waveform
    serves as a good precursor for rogue wave generation before several periods.

    1. Introduction 1 2. Background 4 2.1 Faraday wave ................................................................................... 4 2.2 Particle motion in the Faraday wave ............................................... 5 2.3 Faraday rogue wave ......................................................................... 7 2.4 Rogue wave precursors .................................................................... 8 3. Experiment and Analysis 10 3.1 Experimental setup ........................................................................ 10 3.2 Observation system ........................................................................ 10 3.3 Data analysis .................................................................................. 13 4. Results and Discussion 15 4.1 Rogue wave in Faraday wave ........................................................ 15 4.2 Precursor from preceding surrounding waveform ......................... 19 4.3 Wave-particle interaction .............................................................. 22 4.4 Double parameters ......................................................................... 26 5. Conclusion 28 Bibliography 30

    30
    Bibliography

    [1] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean
    (Springer, 2009)
    [2] N. Akhmediev and E. Pelinovsky, Editorial – Introductory remarks on
    “Discussion & Debate: Rogue Waves – Towards a Unifying Concept?”, Eur.
    Phys. J. Special Topics 185, 1 (2010)
    [3] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Rogue Wave
    Observation in a Water Wave Tank, Phys. Rev. Lett. 106, 204502 (2011)
    [4] M. Onorato, A. R. Osborne, M. Serio, and L. Cavaleri, Modulational
    instability and non-Gaussian statistics in experimental random water-wave
    trains, Phys. Fluids 17, 078101 (2005)
    [5] M. Shats, H. Punzmann, and H. Xia, Capillary Rogue Waves, Phys. Rev.
    Lett. 104, 104503 (2010)
    [6] H. Xia, T. Maimbourg, H. Punzmann, and M. Shats, Oscillon Dynamics and
    Rogue Wave Generation in Faraday Surface Ripples, Phys. Rev. Lett. 109,
    114502 (2012)
    [7] D. R. Solli, C. Ropers, P. Koonath and B. Jalali, Optical rogue waves, Nature
    450, 1054-1057 (2007)
    [8] A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, Non-Gaussian
    Statistics and Extreme Waves in a Nonlinear Optical Cavity, Phys. Rev. Lett.
    103, 173901 (2009)
    [9] A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P.
    V. E. McClintock, Observation of an Inverse Energy Cascade in Developed
    Acoustic Turbulence, Phys. Rev. Lett. 101, 065303 (2008)
    [10] H. Bailung, S. K. Sharma, and Y. Nakamura, Observation of Peregrine
    Solitons in a Multicomponent Plasma with Negative Ions, Phys. Rev. Lett.
    107, 255005 (2011)
    [11] Y. Y. Tsai, J. Y. Tsai, and L. I, Generation of acoustic rogue waves in dusty
    plasmas through three-dimensional particle, Nat. Phys. 12, 573 (2016)
    [12] S. Haver, A possible freak wave event measured at the draupner jacket
    january 1 1995. Proc Rogue Waves 20-22 October (2004)
    [13] P. K. Shukla, I. Kourakis, B. Eliasson, M. Marklund, and L. Stenflo, Instability and Evolution of Nonlinearly Interacting Water Waves, Phys. Rev.
    Lett. 97, 094501 (2006)
    [14] S. Birkholz, C. Br´ee, A. Demircan, and G. Steinmeyer, Predictability of
    Rogue Events, Phys. Rev. Lett. 114, 213901 (2015)
    [15] W. Cousins and T. P. Sapsis, Reduced-order precursors of rare events in
    unidirectional nonlinear water waves, J. Fluid Mech. 790, 368 (2016)
    [16] A. Kudrolli and J. P. Gollub, Patterns and spatiotemporal chaos in
    parametrically forced surface, Physica D 97, 133 (1996)
    [17] D. Binks and W. van de Water, Nonlinear Pattern Formation of Faraday
    Waves, Phys. Rev. Lett. 78, 4043 (1997)
    [18] A. V. Kityk, J. Embs, V. V. Mekhonoshin, and C. Wagner, Spatiotemporal
    characterization of interfacial Faraday waves by means of a light absorption,
    Phys. Rev. E 72, 036209 (2005)
    [19] I. Shani, G. Cohen, and J. Fineberg, Localized Instability on the Route to
    Disorder in Faraday Waves, Phys. Rev. Lett. 104, 184507 (2010)
    [20] A. B. Ezersky, D. A. Ermoshin, and S. V. Kiyashko, Dynamics of defects in
    parametrically excited capillary ripples, Phys. Rev. E 51, 4411 (1995)
    [21] W. B. Wright, R. Budakian, and S. J. Putterman, Diffusing Light
    Photography of Fully Developed Isotropic Ripple Turbulence, Phys. Rev.
    Lett. 76, 4528 (1996)
    [22] A. von Kameke, F. Huhn, G. Fern´andez-Garc´ıa, A. P. Muuzuri, and V.
    P´erez-Muuzuri, Double Cascade Turbulence and Richardson Dispersion in
    a Horizontal Fluid Flow, Phys. Rev. Lett. 107, 074502 (2011)
    [23] N. Francois, H. Xia, H. Punzmann, S. Ramsden, and M. Shats, Three-
    Dimensional Fluid Motion in Faraday Waves Creation of Vorticity and
    Generation of Two-Dimensional Turbulence, Phys. Rev. X 4, 021021 (2014)
    [24] H. Xia, M. Shats, and H. Punzmann, Modulation instability and capillary
    wave turbulence, Europhys. Lett. 91, 14002 (2010)
    [25] U. Y. Peng, M. C. Chang, and L. I, Lagrangian-Eulerian dynamics of
    breaking shallow water waves through tracer tracking of fluid elements,
    Phys. Rev. E 87, 023017 (2013)
    [26] H. Y. Chen, C. Y. Liu, and L. I, Identifying Faraday rogue wave precursors
    from surrounding waveform information, Phys. Rev. Fluids 3, 064401 (2018)

    QR CODE
    :::