| 研究生: |
陳書品 Shu-Pin Chen |
|---|---|
| 論文名稱: |
蛋白質於真核細胞中位置的預測 Prediction of eukaryotic protein subcellular localization |
| 指導教授: |
洪炯宗
Jorng-Tzong Horng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 位置 、預測 、蛋白質 |
| 外文關鍵詞: | subcellular localization, protein, siganl peptide |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
預測不同的蛋白質會落在細胞中位置是一個重要而且研究相當完整的議題,細胞中每個位置各司其職,而合成好的蛋白質在不同的位質會完成他們本身的使命,蛋白質如果落在相同的位置,被認為是具有相同或是相似的功能,而了解蛋白質於細胞中的位置,是一個很重要的過程對於增進發現藥物的目標辨識。
目前已存在的方法,都建立於從蛋白質序列或是針對某片段的信號,缺乏更多的生物特性像是後轉譯修飾,而我們建立一個整合系統,能夠知道蛋白質會落在真核細胞中的位置,我們取用蛋白質序列的組成、某片段的信號、蛋白質的區塊和同源蛋白質的搜尋等來建構這個系統。
Prediction of subcellular localization of various proteins is an important and well-studied problem. Each compartment in cell has specific tasks, and proteins in each compartment are synthesized to fulfill these tasks. Proteins localized in the same compartment are thought to have the same or similar function. Knowledge of the subcellular localization of a protein can significantly improve target identification during the drug discovery process. Current available methods extract information from amino acid sequence or signal peptide and lack more biological features like post-translational modification. We develop an integrated system for biologists to know which localization the proteins from eukaryote is located to. The system is based on protein sequence composition, signal peptide, protein domains from Pfam and homologs search.
1. Yu, C.S., et al., Prediction of protein subcellular localization. Proteins, 2006. 64(3): p. 643-651.
2. Pierleoni, A., et al., BaCelLo: a balanced subcellular localization predictor, in Bioinformatics. 2006.
3. Shatkay, H., et al., SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics, 2007. 23(11): p. 1410.
4. Guda, C. and S. Subramaniam, TARGET: a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics, 2005. 21(21): p. 3963-3969.
5. Nair, R. and B. Rost, LOCnet and LOCtarget: sub-cellular localization for structural genomics targets. Nucleic Acids Research.
6. Emanuelsson, O., et al., Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence. Journal of Molecular Biology, 2000. 300(4): p. 1005-1016.
7. Roise, D., et al., Amphiphilicity is essential for mitochondrial presequence function. The EMBO Journal, 1988. 7(3): p. 649.
8. Becker, W.M., The world of the cell. 2000: Benjamin Cummings, San Francisco.
9. Chang, C.C. and C.J. Lin, LIBSVM: a library for support vector machines. Software available at http://www. csie. ntu. edu. tw/cjlin/libsvm, 2001. 80: p. 604–611.
10. Eddy, S.R., HMMER: Profile hidden Markov models for biological sequence analysis. Washington University School of Medicine, StLouis, MO (http://hmmer. wustl. edu/), 2000.
11. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 25(17): p. 3389-3402.
12. Li, Z.R., et al., PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Research, 2006. 34(Web Server issue): p. W32.
13. Kiemer, L., J.D. Bendtsen, and N. Blom, NetAcet: prediction of N-terminal acetylation sites. 2005, Oxford Univ Press. p. 1269-1270.
14. Gupta, R., E. Jung, and S. Brunak, Prediction of N-glycosylation sites in human proteins http://www. cbs. dtu. dk/services. 2002, NetNGlyc.
15. Hansen, J.E., et al., NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconjugate Journal, 1998. 15(2): p. 115-130.
16. Blom, N., S. Gammeltoft, and S. Brunak, Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 1999. 294(5): p. 1351-1362.
17. Nair, R., P. Carter, and B. Rost, NLSdb: database of nuclear localization signals. Nucleic Acids Research, 2003. 31(1): p. 397-399.
18. Sigrist, C.J.A., et al., PROSITE: A documented database using patterns and profiles as motif descriptors. Briefings in Bioinformatics, 2002. 3(3): p. 265-274.
19. Bateman, A., et al., The Pfam Protein Families Database. Nucleic Acids Research, 2002. 30(1): p. 276-280.
20. Lee, T.Y., et al., dbPTM: an information repository of protein post-translational modification. Nucleic Acids Research.
21. Xie, D., et al., LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST. Nucleic Acids Research.
22. Chang, J.M., et al., PSLDoc: Protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis. Proteins, 2008.
23. Wen-Lin, H., et al., ProLoc-GO: Utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization. BMC Bioinformatics. 9.
24. Nair, R. and B. Rost, LOC3D: annotate sub-cellular localization for protein structures. Nucleic Acids Research, 2003. 31(13): p. 3337.
25. Park, K.J. and M. Kanehisa, Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. 2003, Oxford Univ Press. p. 1656-1663.
26. Eddy, S.R., Profile hidden Markov models. Bioinformatics, 1998. 14(9): p. 755-763.
27. Cortes, C. and V. Vapnik, Support-vector networks. Machine Learning, 1995. 20(3): p. 273-297.
28. Jiawei Han, M.K., Data mining : concepts and techniques. 2 edition ed. 2006: Morgan Kaufmann.
29. Twyman, R.M., Principles of proteomics. 2004: BIOS Scientific Publishers, Abingdon, Oxon; New York.
30. McNabb, D.S. and R.J. Courtney, Posttranslational modification and subcellular localization of the p12 capsid protein of herpes simplex virus type 1. Journal of Virology, 1992. 66(8): p. 4839.