| 研究生: |
范雅淇 Ya-Chi Fan |
|---|---|
| 論文名稱: |
高溶解性化合物的結晶製程設計:十二烷基硫酸鈉 Crystallization Process Design of a Highly Soluble Compound: Sodium Dodecyl Sulfate (SDS) |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 結晶 、製程設計 、高溶解性化合物 、十二烷基硫酸鈉 |
| 外文關鍵詞: | Crystallization, Process Design, Highly Soluble Compound, Sodium Dodecyl Sulfate (SDS) |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在文獻回顧中,蒸發結晶、反溶劑結晶以及冷卻結晶法為分離及純化常見之技術,但多為各別探討,較少文獻針對此三種結晶製程合併及放大規模的討論。因此,本研究的目的是發展對於高溶解度分子:十二烷基硫酸鈉(SDS)具有再現性之結晶製備程序,由冷卻結晶、蒸發結晶以及反溶劑結晶法共同組成,並預期能達到理想的產品性質,如產量、顆粒尺寸分佈(PSD)和純度。此合併結晶製程的產率為80.2%至90.2%,其中母液從25℃冷卻至5℃,藉由加入晶種及將丙酮以先慢後快的方式加入的應用,確實可以將PSD改善,其中晶體之平均尺寸為125至177 μm。所產出的晶體皆經過偏振光學顯微鏡(POM)、傅里葉變換紅外光譜(FTIR)、粉末X射線衍射(PXRD)和熱重分析(TGA)完整的鑑定。根據FTIR、PXRD和TGA之檢測結果,產出的SDS與購買的SDS相同。此外,我們也將文獻中提供的SDS-H2O相圖及在蒸發過程中的SDS溶液組成變化進行了相關的研究及比對。
Evaporative, anti-solvent and cooling crystallization are common techniques used in purification and separation, and have been well-studied individually in the literatures. However, there is a few study related to the combination and scaling-up of those three crystallization processes. Therefore, the aim of this research is to develop a reproducible production of a highly water soluble compound: sodium doedecyl sulfate (SDS) through the combined process of evaporative, anti-solvent and cooling crystallization systematically with the desired product attributes such as yield, particle size distribution (PSD) and purity. The yield for the combined crystallization process was 80.2% to 90.2%, where the mother liquor was cooled from 25℃ to 5℃. PSD could indeed be narrowed by applying seeding strategy accompanying with cubic addition of acetone in the combined crystallization process, the mean crystal size was 125 to 177 μm. The produced crystals were also characterized by polarized optical microscopy (POM), Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). Based on the results of FTIR, PXRD and TGA, the produced SDS was identical with the purchased SDS. In addition, the variation of composition during evaporation process was investigated experimentally by the SDS-H2O phase diagram provided in the literature.
Chapter 1
1. Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Cho, J. M.; Yun, G.; Lee, J. Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J. Pharm. Sci. 2014, 9(6), 304-316.
2. El-Yafi, A. K. E.; El-Zein, H. Technical Crystallization for Application in Pharmaceutical Material Engineering: Review Article.Asian J. Pharm. Sci. 2015, 10(4), 238-291.
3. Kougoulos, E.; Jones, A. G.; Jennings, K. H.; Wood-Kaczmar, M. W. Use of Focused Beam Reflectance Measurement (FBRM) and Process Video Imaging (PVI) in A Modified Mixed Suspension Mixed Product Removal (MSMPR) Cooling Crystallizer. J. Cryst. Growth, 2005, 273(3-4), 529-534.
4. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Introduction to Crystallization Issues. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 1-11
5. Zhang, H.; Quon, J.; Alvarez, A. J.; Evans, J.; Myerson, A. S.; Trout, B.Development of Continuous Anti-Solvent/Cooling Crystallization Process Using Cascaded Mixed Suspension, Mixed Product Removal Crystallizers. Org. Process Res. Dev. 2012, 16 (5), 915–924.
6. Acevedo, D.; Kamaraju, V. K.; Glennon, B.; Nagy, Z. K. Modeling and Characterization of an in Situ Wet Mill Operation. Org. Process Res. Dev. 2017, 21 (7), 1069–1079.
7. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Evaporative Crystallization. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 167-178.
8. Lewis, A.; Seckler, M.; Kramer, H.; van Rosmalen, G. Industrial Crystallization: Fundamentals and Applications. Cambridge University Press, Cambridge, 2015; pp 1-25.
9. Shahidzadeh-Bonn, N.; Rafai, S.; Bonn, D.; Wegdam, G.Salt Crystallization during Evaporation: Impact of Interfacial Properties. Langmuir 2008, 24 (16), 8599–8605.
10. Pacheco, C. R. F.; Frioni, L. S. M.Experimental Results for Evaporation of Sucrose Solution Using a Climbing/Falling Film Plate Evaporator. J. Food Eng. 2004, 64 (4), 471–480.
11. Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S. C. B.Morphology Control Strategies for Solution-Processed Organic Semiconductor Thin Films. Energy Environ. Sci. 2014, 7 (7), 2145–2159.
12. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Antisolvent Crystallization. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 179-205.
13. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Cooling Crystallization. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 137-166.
14. Jillavenkatesa, A.; Dapkunas, S. J.; Lum, L. H. Particle Size Characterization. NIST Special Publication 960-1; National Institute of Standards and Technology: Gaithersburg, 2001, pp 1-165.
15. Lee, T.; Lin, H. Y.; Lee, H. L. Engineering Reaction and Crystallization and the Impact on Filtration, Drying, and Dissolution Behaviors: The Study of Acetaminophen (Paracetamol) by in-Process Controls. Org. Process Res. Dev. 2013, 17 (9), 1168–1178.
16. Chen, C. W.; Lee, T. Round Granules of Dimethyl Fumarate by Three-in-One Intensified Process of Reaction, Crystallization, and Spherical Agglomeration in a Common Stirred Tank. Org. Process Res. Dev. 2017, 21 (9), 1326–1339.
17. Wieckhusen, D. Development of Batch Crystallization. In Crystallization: Basic Concepts and Industrial Applications; Beckmann, W. Wiley: Weinheim, 2013; pp 187-202.
18. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Critical Issues in Crystallization Practice. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 101-116.
19. Vedantam, S.; Ranade, V.V. Crystallization: Key Thermodynamic, Kinetic and Hydrodynamic Aspects. Sadhana - Acad. Proc. Eng. Sci. 2013, 38 (6), 1287–1337.
20. Barrett, P.; Smith, B.; Worlitschek, J.; Bracken, V.; O’Sullivan, B.; O’Grady, D. A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes. Org. Process Res. Dev. 2005, 9 (3), 348–355.
21. Sundell, S.The Crystal Structure of Sodium Dodecyl Sulfate. Acta Chem. Scand. 1977, A31, 799–807.
22. Coiro, V. M.; Mazza, F.; Pochetti, G.Crystal Phases Obtained from Aqueous Solutions of Sodium Dodecyl Sulfate. The Structure of a Monoclinic Phase of Sodium Dodecyl Sulfate Hemihydrate. Acta Crystallogr. 1986, C42 (2), 991–995.
23. Coiro, V. M.; Manigrasso, M.; Mazza, F.; Pochetti, G.Structure of a Triclinic Phase of Sodium Dodecyl Sulfate Monohydrate. A Comparison with Other Sodium Dodecyl Sulfate Crystal Phases. Acta Crystallogr. 1987, C43 (43), 850–854.
24. Kékicheff, P. Phase Diagram of Sodium Dodecyl Sulfate-Water System. J. Colloid Interface Sci. 1989, 131 (1), 133–152.
25. Gloxhuber, C.; Kunster, K. Anionic Surfactants: Biochemistry, Toxicology, Dermatology 2nd ed. New York, 1992.
26. Sodium dodecyl sulfate – Wikipedia. (https://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate) (accessed Dec. 28, 2017).
27. Smith, L. A.; Hammond, R. B.; Roberts, K. J.; Machin, D.; McLeod, G. Determination of the Crystal Structure of Anhydrous Sodium Dodecyl Sulphate Using a Combination of Synchrotron Radiation Powder Diffraction and Molecular Modelling Techniques. J. Mol. Struct. 2000, 554 (2–3), 173–182.
28. Rattes, A. L. R.; Oliveira, W. P. Spray Drying Conditions and Encapsulating Composition Effects on Formation and Properties of Sodium Diclofenac Microparticles. Powder Technol. 2007, 171 (1), 7–14.
Chapter 2
1. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72-92.
2. Kékicheff, P.Phase Diagram of Sodium Dodecyl Sulfate-Water System. J. Colloid Interface Sci. 1989, 131 (1), 133–152.
3. O’Grady, D. Advanced Strategies to Control Crystal Size Distribution. Mettler Toledo White Paper, 2016
4. Kim, S.; Lotz, B.; Lindrud, M.; Girard, K.; Moore, T.; Nagarajan, K.; Alvarez, M.; Lee, T.; Nikfar, F.; Davidovich, M.; et al.Control of the Particle Properties of a Drug Substance by Crystallization Engineering and the Effect on Drug Product Formulation. Org. Process Res. Dev. 2005, 9 (6), 894–901.
5. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introducing to Spectroscopy: a Guide for Students of Organic Chemistry, 3rd ed.; Thomson Learning, Inc.: Boston, BS, 2001; pp: 45-68.
6. Hiroi, T.; Shibayama, M. Measurement of Particle Size Distribution in Turbid Solutions by Dynamic Light Scattering Microscopy. J. Vis. Exp. 2017, 119, 1–7.
Chapter 3
1. Wang, W.; Lu, H.; Liu, Y.; Leng, J. Sodium Dodecyl Sulfate/Epoxy Composite: Water-Induced Shape Memory Effect and Its Mechanism. J. Mater. Chem. A 2014, 2 (15), 5441-5549.
2. Sundell, S.The Crystal Structure of Sodium Dodecyl Sulfate. Acta Chem. Scand. 1977, A31, 799–807.
3. Coiro, V. M.; Mazza, F.; Pochetti, G.Crystal Phases Obtained from Aqueous Solutions of Sodium Dodecyl Sulfate. The Structure of a Monoclinic Phase of Sodium Dodecyl Sulfate Hemihydrate. Acta Crystallogr. 1986, C42 (2), 991–995.
4. Coiro, V. M.; Manigrasso, M.; Mazza, F.; Pochetti, G.Structure of a Triclinic Phase of Sodium Dodecyl Sulfate Monohydrate. A Comparison with Other Sodium Dodecyl Sulfate Crystal Phases. Acta Crystallogr. 1987, C43 (43), 850–854.
5. Smith, L. A.; Hammond, R. B.; Roberts, K. J.; Machin, D.; McLeod, G.Determination of the Crystal Structure of Anhydrous Sodium Dodecyl Sulphate Using a Combination of Synchrotron Radiation Powder Diffraction and Molecular Modelling Techniques. J. Mol. Struct. 2000, 554 (2–3), 173–182.
6. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72-92.
7. Lichtfouse, E.; Schwarzbauer, J.; Robert, D. Pollutant Diseases, Remediation and Recycling, Springer: Switzerland, 2013, pp 277-320
8. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Evaporative Crystallization. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 167-178.
9. Hoang, H.; Galliero, G. Shear Viscosity of Inhomogeneous Fluids. J. Chem. Phys. 2012, 136 (124902), 1-8.
10. Kékicheff, P. Phase Diagram of Sodium Dodecyl Sulfate-Water System. J. Colloid Interface Sci. 1989, 131 (1), 133–152.
11. Sood, A. K.; Sharma, S.Influence of Organic Solvents and Temperature on the Micellization of Conventional and Gemini Surfactants: A Conductometric Study. Phys. Chem. Liq. 2016, 54 (5), 574–588.
12. Ghosh, S.; Roy, A.; Banik, D.; Kundu, N.; Kuchlyan, J.; Dhir, A.; Sarkar, N.How Does the Surface Charge of Ionic Surfactant and Cholesterol Forming Vesicles Control Rotational and Translational Motion of Rhodamine 6G Perchlorate (R6G ClO4)? Langmuir 2015, 31 (8), 2310–2320.
13. Afzal, M.; Kundu, P.; Das, S.; Ghosh, S.; Chattopadhyay, N. A Promising Strategy for Improved Solubilization of Ionic Drugs Simply by Electrostatic Pushing. RSC Adv. 2017, 7 (69), 43551–43559.
14. Pal, N.; Saxena, N.; Mandal, A.Synthesis, Characterization, and Physicochemical Properties of a Series of Quaternary Gemini Surfactants with Different Spacer Lengths. Colloid Polym. Sci. 2017, 295 (12), 2261–2277.
15. Lee, T.; Lin, M.S. Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (Alq3) by Crystal Engineering. Crys. Growth Des. 2007, 7 (9), 1803-1810.
16. Reus, M.A.; Guguta, C.; Kramer, H. J. M.; Horst, J. H. Solubility : Importance , Measurements and Applications. Technobis Crystallization Systems White Paper. 2016, 1-8.
17. Park, M.W.; Yeo, S.D. Antisolvent Crystallization of Sulfa Drugs and the Effect of Process Parameters. Sep. Sci. Technol. 2010, 45 (10), 1402–1410.
18. Tao, M.; Wang, Z.; Gong, J.; Hao, H.; Wang, J. Determination of the Solubility, Dissolution Enthalpy, and Entropy of Pioglitazone Hydrochloride (Form II) in Different Pure Solvents. Ind. Eng. Chem. Res. 2013, 52 (8), 3036–3041.
19. Tung, H. H.; Paul, E. L.; Midler, M.; Mccauley, J. A. Critical Issues in Crystallization Practice. In Crystallization of Organic Compounds: An Industrial Perspective; John Wiley & Sons, Inc.: New Jersey, 2009, pp 101-116.
20. O’sullivan, B.; Smith, B.; Baramidze, G. Recent Advances for Seeding a Crystallization Process: A Review of Modern Techniques. Mettler Toledo White Paper, 2016.