| 研究生: |
李冠霖 Guan-Lin Lee |
|---|---|
| 論文名稱: |
金屬鋁薄膜V 型樑結構微熱致動器模擬與實驗 Simulation and Experiment of Aluminum V-beam Micro Thermal Actuators |
| 指導教授: |
洪銘聰
Ming-Tsung Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 熱致動器 、微製造 |
| 外文關鍵詞: | Thermal actuator, micro-fabrication |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電系統中微熱致動器具有輸入電壓低、產生位移大、製程簡易等優勢,典型微熱致動器以材料受熱產生形變量,根據位移的方向,分為同平面(in-plane)與出平面(out-of-plane)熱致動器。相較於同平面熱致動器,出平面熱致動器在製程上較困難、相關文獻較少,本文以鋁薄膜V型樑結構為元件主體,利用薄膜結構及挫曲機制達到出平面方向的形變,量測在出平面方向的位移量。
利用有限元素法模擬元件在施加電壓下之電流分佈、溫度變化與形變量。結果顯示微熱致動器在低電壓下,結構產生水平位移;在高電壓下,熱膨脹形成壓縮力,當壓縮力超過臨界負載後結構發生挫曲變形,造成出平面方向位移。V型樑結構樑寬度20 μm、薄膜厚度500 nm在溫度56℃發生挫曲,出平面位移量為16 μm。根據模擬結果設計元件結構,利用半導體製程技術使用蒸鍍方式沉積500 nm鋁薄膜、定義V型樑圖形,以非等向性濕蝕刻矽完成V型樑結構釋放。將製備完成之元件以全域性加熱,利用雷射位移計量測在溫度150℃時,出平面位移量為98 μm;以區域性加熱在輸入功率為0.01 W時結構溫度為146℃,觀察到出平面的位移量為6 μm,量測結果在出平面位移量有差異性,因製程不穩定造成元件缺陷。
In micro-electro-mechanical system, micro-thermal actuators have the advantages of low input voltage, large displacement and simple fabrication process. Typical micro-thermal actuators are driven by material expansion. Accord to the actuation direction, it can be divided into the in-plane and out-of-plane thermal actuators. Compared with the in-plane actuators, the out-of-plane actuators have less investigated and are difficulty to fabricate. This study takes the V-beam structure as the main component, use the thin film structure and buckling to achieve the out-of-plane deformation, and measure the displacement in the out-of-plane direction.
The finite element method is used to simulate the current density, temperature, and deformation of the device. The results show that the micro-thermal actuators have horizontal displacements at low voltage, and cause buckling deformation due to the excess compressive force over the critical load at high voltage, causing the displacement in the out-of-plane direction. The V-beam structure with the beam width 20 μm and thickness 500 nm buckles at the temperature of 56℃ and achieve 16 μm displacement in out-of-plane direction. Based on the simulation results, the actuator is fabricate using semiconductor fabrication techniques. A 500 nm aluminum film is deposited by vapor deposition, followed by lithography and anisotropic wet etching to generate the V-beam structure. The measurement results show a 98 μm out-of-plane displacement at the global heating temperature of 150℃ by laser displacement meter. The local heating of 0.01 W cause a displacement of 6 μm at 146℃. The difference in the measurement results is due to the structure defects of process instability.
[1] W. Riethmuller and W. Benecke, "Thermally excited silicon microactuators," IEEE Transactions on Electron Devices, vol. 35, no. 6, pp. 758-763, 1988.
[2] G. K. Fedder and R. T. Howe, "Thermally assembly of polysilicon microstructures," Proceedings. IEEE Micro Electro Mechanical Systems, pp. 63-68 ,1991.
[3] J. H. Comtois and V. M. Bright, "Applications for surface-micromachined polysilicon thermal actuators and arrays," Sensors and Actuators A: Physical, vol. 57, no. 1, pp. 19-25, 1996.
[4] J. H. Comtois, M. A. Michalicek, and C. C. Barron, "Characterization of electrothermal actuators and arrays fabricated in a four-level, planarized surface-micromachined polycrystalline silicon process," Solid State Sensors and Actuators, vol. 2, pp. 769-772, 1997.
[5] T. Seki, M. Sakata, T. Nakajima, and M. Matsumoto, "Thermal buckling actuator for micro relays," Solid State Sensors and Actuators, vol. 2, pp. 1153-1156, 1997.
[6] L. Que, J.-S. Park, and Y. B. Gianchandani, "Bent-beam electro-thermal actuators for high force applications," Micro Electro Mechanical Systems, pp. 31-36, 1999.
[7] M. J. Sinclair, "A high force low area MEMS thermal actuator," Thermal and thermomechanical phenomena in electronic systems, pp.127-132, 2000.
[8] K. M. Liao, C. C. Chueh, and R. Chen, "A novel electro-thermally driven bi-directional microactuator," Micromechatronics and Human Science, pp.267-274, 2002.
[9] P. I. Yeh, W. C. Chen, C. F. Hu, and W. Fang, "A single-layer step-bridge for out-of-plane thermal actuator," Solid-State Sensors, Actuators and Microsystems, pp. 2175-2178, 2007.
[10] K. Segueni, L. L. Garrec, A. S. Rollier, R. Robin, and S. Touati, "Totally free-flexible membrane for low voltage MEMS metal contact switch," Microwave Integrated Circuit, pp. 1153-1156, 2007.
[11] K. Kwack and K. Chun, "Very high displacement to voltage ratio MEMS thermal actuator,"IEEE Sensors, 2015.
[12] J. A. Roll, B. Cheng and X. Deng, "An electromagnetic actuator for high-frequency flapping-wing microair vehicles," IEEE Transactions on Robotics, vol. 31, no. 2, pp. 400-414, 2015
[13] N. Dumas, L. Latorre, F. Mailly, and P. Nouet, "Smart drivers for online diagnosis of electrostatic MEMS actuators," Mixed-Signals, Sensors and Systems Test Workshop, IEEE, 2010.
[14] I. Grinberg, N. Maccabi, and D. Elata, "A pure-twisting piezoelectric actuator for tilting micromirror applications," Solid-State Sensors, Actuators and Microsystems, pp. 2035-2038, 2017.
[15] E. H. Yang and H. Fujita, "Fabrication and characterization of U-shaped beams for the determination of Young’s modulus modification due to joule heating of polysilicon microstructures," Solid State Sensors and Actuators, pp. 603-606, 1997.
[16] X. Zhang, Y. Wu, X. Miao, C. Zhang, and G. Ding, "An electro-thermal SU-8 cantilever micro actuator based on bimorph effect," Micro Engineered and Molecular Systems, pp. 362-365, 2010.
[17] W. C. Chen, P. I. Yeh, C. F. Hu, and W. Fang, "Design and Characterization of single-layer step-bridge structure for out-of-plane thermal actuator," Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 70-77, 2008.
[18] Q. A. Huang and N. K. S. Lee, "Analysis and design of polysilicon thermal flexure actuator," Journal of Micromechanics and Microengineering, pp. 64-70, 1999.
[19] P. Lerch, C. K. Slimane, B. Romanowicz, and P. Renaud, "Modelization and characterization of asymmetrical thermal micro-actuators," Journal of Micromechanics and Microengineering, pp. 134-137, 1996.
[20] S. A. Sheikh and T. Shanmuganantham, "A novel design microgripper based on electrothermal expansion principle," Computer Communication and Informatics, 2014.
[21] H. steiner, W. Hortschitz, M. Stifter and F. Keplinger, "Thermal actuated passive bistable MEMS switch," Microelectronic Systems Symposium, 2014.
[22] J. K. Luo, A. J. Flewitt, S. M. Spearing, and N. A. Fleck, "Three types of planar structure microspring electro-thermal actuators with insulating beam constraints," Journal of Micromechanics and Microengineering, vol.15, no. 8, pp.1527-1535, 2005.
[23] O. H. Basquin, "Tangent modulus and the strength of steel columns in tests, " Technologic Papers of The Bureau of standards, vol.18, no. 263, pp.384-385, 1924.
[24] J. T. Bottomley, "James Prescott Joule," Nature, pp. 617-620, 1882.
[25] G. Yan, P. C. H. Chan, I. M. Hsing, R. K. Sharma, J. K. O. Sin, and Y. Wang, "A improved TMAH Si-etching solution without attaching exposed aluminum," Sensors and Actuators A: Physical, vol 89, no. 2, pp. 135-141, 2001.
[26] K. Tokoro, D. Uchikawa, M. Shikida, and K. Sato, "Anisotropic etching properties of silicon in KOH and TMAH solutions," Micromechatronics and Human Science, pp. 65-70, 1998.