| 研究生: |
洪誠聰 Cheng-Cong Hung |
|---|---|
| 論文名稱: |
The Boundedness of Calderón-Zygmund Operators by Wavelet Characterization |
| 指導教授: |
李明憶
Ming-Yi Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 26 |
| 中文關鍵詞: | 哈弟空間 、小波刻劃 、仿積算子 、T1定理 |
| 外文關鍵詞: | Hardy spaces, Wavelet Characterization, Calderón-Zygmund Operators, para-product, T1 Theorem |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們討論的是有關於Calderón-Zygmund算子在哈弟空間 的有界性。我們利用 的小波刻劃來證明當Calderón-Zygmund算子T滿足T*1=0,則T在H^p上有界,其中p滿足n/(n+ε)<p<=1,ε依賴於T的核的光滑性。
This article deals with the boundedness properties of Calderón-Zygmund operators on Hardy spaces, H^p. We use wavelet characterization of H^p to show that a Calderón-Zygmund operator T with T*1=0 is bounded on H^p, n/(n+ε)<p<=1, where ε is the regular exponent of kernel of T.
[CZ] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88(1952), 85-139.
[DJ] G. David, J. L. Journ′e, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120(1984), 371-397.
[DH] D. G. Deng and Y. S. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in Mathematics, 1966. Springer-Verlag, Berlin, 2009.
[F] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77(1971), 587-588.
[FS] C. Fefferman and E.M. Stein, Some Maximal inequalities, Amer. J. Math., 93(1971), 107-115.
[GR] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[HL] Y. Han and G. Lu, Discrete Littlewood-Paley-stein theory and multi-parameter Hardy spaces associated with
ag singular integrals, preprint.
[M1] Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, New York, 1992.
[M2] Y. Meyer and R. Coifman, Wavelets: Calderón-Zygmund and Multilinear Operators, Cambridge University Press, Cambridge, New York, 1997.
[S] E.M. Stein, Harmonic Analysis - Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993. 21