| 研究生: |
陳品多 Pin-Do Chen |
|---|---|
| 論文名稱: |
長波紅外波段之超穎透鏡模組光學性能檢測 Measurement of Meta-optics Module at Long Wavelength Infrared |
| 指導教授: |
王智明
Chih-Ming Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 超穎透鏡 、熱影像 |
| 外文關鍵詞: | Metalens, Thermal |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對我們製作的三款原理與結構特性各異的紅外超穎透鏡:M1、M5與M6設計統一的量測系統檢測其光學性能。M1 與 M5 採用傳播相位(Propagation phase)設計,分別為焦距 2.36 mm、視角為 90° 的小尺寸短焦透鏡,以及焦距約 15.4 mm、視角為 60° 的大尺寸長焦透鏡。M6 為雙透鏡系統,採用 PB phase 設計,由兩顆直徑 1.65 mm 的圓形透鏡並排而成,其焦距為2 mm 能分別聚焦左旋與右旋圓偏振紅外光。三款透鏡皆設計應用於 8 – 12 μm 波段熱影像系統中。
我們使用雷射切割製作不同線寬的光柵圖形直接觀察三者的影像品質,並量測其調製傳遞函數(modulation transfer function, MTF),量化其光學性能的表現,並觀察其在不同工作距離下的影像變化。此外,我們也說明了量測光學性能時,須注意哪些架構上、或是影像處理上的問題。包括測量各個視角性能的方法;或是我們針對成像系統內部或測試物表面反射造成的雜訊設計實驗,對其做抗反射處理,以提升量測準確性;以及如何訂定適當的物距,才能得到截止空間頻率之下的MTF值。雖然結果顯示量測數據與模擬結果存在差異,我們仍從多次實驗中累積了寶貴經驗,並發現許多在量測透鏡光學性能時應特別注意的細節,這將有助於未來進一步優化整體實驗流程與設計準確性。
This study evaluates the optical performance of three infrared metalenses—M1, M5, and M6—each designed with distinct principles and structural characteristics, using a unified measurement system. Both M1 and M5 adopt a propagation phase design. M1 is a compact short-focus lens with a focal length of 2.36 mm and a 90° field of view (FOV), while M5 is a larger long-focus lens with a focal length of approximately 15.4 mm and a 60° FOV. M6 is a dual-lens system based on the Pancharatnam–Berry (PB) phase design, consisting of two 1.65 mm diameter circular lenses placed side by side. It has a focal length of 2 mm and is capable of independently focusing left- and right-handed circularly polarized infrared light. All three lenses are designed for use in thermal imaging systems operating in the 8 – 12 μm wavelength range.
We fabricated grating targets with varying linewidths using laser cutting to directly observe the image quality of each lens. The modulation transfer function (MTF) was measured to quantitatively assess optical performance and evaluate image variations at different working distances. Additionally, we addressed critical considerations in system architecture and image processing when measuring optical characteristics. These include methods for evaluating performance across different viewing angles, experimental designs to suppress reflection-induced noise from the imaging system or test object surfaces through anti-reflection treatments, and strategies for selecting appropriate object distances to obtain MTF values at the cutoff spatial frequency. Although the experimental results showed noticeable discrepancies from the simulations, we gained valuable insights from repeated experiments. These findings revealed critical details that must be carefully considered when measuring the optical performance of the lens, and contribute to improving future measurement strategies.
[1] P. R. West et al., "All-dielectric subwavelength metasurface focusing lens," Optics express, vol. 22, no. 21, pp. 26212-26221, 2014.
[2] M. Y. Shalaginov et al., "Single-element diffraction-limited fisheye metalens," Nano Letters, vol. 20, no. 10, pp. 7429-7437, 2020.
[3] M. Y. Shalaginov et al., "Metasurface-enabled wide-angle stereoscopic imaging," in Frontiers in Optics, 2022: Optica Publishing Group, p. JTu7B. 2.
[4] M. Liu et al., "Achromatic and coma-corrected hybrid meta-optics for high-performance thermal imaging," Nano Letters, vol. 24, no. 25, pp. 7609-7615, 2024.
[5] S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, "A review of dielectric optical metasurfaces for wavefront control," Nanophotonics, vol. 7, no. 6, pp. 1041-1068, 2018.
[6] Y. Kuang, S. Wang, B. Mo, S. Sun, K. Xia, and Y. Yang, "Palm vein imaging using a polarization-selective metalens with wide field-of-view and extended depth-of-field," npj Nanophotonics, vol. 1, no. 1, p. 24, 2024.
[7] Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, "A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging," Applied Physics Letters, vol. 113, no. 20, 2018.
[8] L. Huang et al., "Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens," Optical Materials Express, vol. 11, no. 9, pp. 2907-2914, 2021.
[9] L. Huang et al., "Broadband thermal imaging using meta-optics," Nature Communications, vol. 15, no. 1, p. 1662, 2024.
[10] M. Hou, Y. Chen, J. Li, and F. Yi, "Single 5-centimeter-aperture metalens enabled intelligent lightweight mid-infrared thermographic camera," Science Advances, vol. 10, no. 27, p. eado4847, 2024.
[11] J. Li et al., "Largest aperture metalens of high numerical aperture and polarization independence for long-wavelength infrared imaging," Optics Express, vol. 30, no. 16, pp. 28882-28891, 2022.
[12] H.-I. Lin et al., "Wide-Field-of-View, Large-Area Long-Wave Infrared Silicon Metalenses," ACS Photonics, vol. 11, no. 5, pp. 1943-1949, 2024/05/15 2024, doi: 10.1021/acsphotonics.4c00013.
[13] H. C. Nalbant, F. Balli, T. Yelboğa, A. Eren, and A. Sözak, "Transmission optimized LWIR metalens," Applied Optics, vol. 61, no. 33, pp. 9946-9950, 2022.
[14] N. L. Koren, "Image Information Metrics From Slanted Edges: A Toolkit of Metrics to Aid Object Recognition, Machine Vision, and Artificial Intelligence Systems," Electronic Imaging, vol. 36, pp. 1-17, 2024.
[15] Y.-C. Chen et al., "Broadband achromatic thermal metalens with a wide field of view based on wafer-level monolithic processes," Applied Physics Letters, vol. 125, no. 5, 2024.
[16] N. J. G.Hollows, "Introfuction to Modulation Transfer Function."
[17] "FLIR Cameras - Microbolometer Systems Standard Sensor Packages."
[18] G. R. Bird and M. Parrish, "The Wire Grid as a Near-Infrared Polarizer," J. Opt. Soc. Am., vol. 50, no. 9, pp. 886-891, 1960/09/01 1960, doi: 10.1364/JOSA.50.000886.