跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林昱廷
LIN, YU-TING
論文名稱: 非線性調控對心臟分岔現象的影響
Nonlinear control on heart bifurcation
指導教授: 陳志強
C.K. Chan
黎璧賢
P.Y. Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 生物物理研究所
Graduate Institute of Biophysics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 110
中文關鍵詞: 分岔非線性調控吸引子滯後效應
外文關鍵詞: Non-monotonic restitution, Attractor
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心臟病中「心因性猝死(Sudden Cardiac Death, SCD)」就佔了半數。其中又有80\% 是由心室引起的心律不整。心律不整的成因除了組織損傷外,心臟中的非線性動力系統也是主因之一。一般相信心臟由規律進入到不規律狀態的過程中會經過倍週期狀態。因此如何將倍週期狀態中的心臟拉回週期性的規律心跳,甚至是早一步阻止其進入倍週期的方法成為預防心律不整的重要課題,亦是本研究的主要目的。本研究使用了一個新的控制方法。可以影響心臟動力系統原有的分岔點(Bifurcation point),使倍週期心跳恢復為單週期。此外,控制過程中所形成的吸引子形狀也可以作為判斷系統狀態的依據。


    About 50\% of all cardiovascular deaths are sudden cardiac deaths and about 80\% of these are caused by ventricular tachyarrhythmia. The cause of arrhythmias is not only because of physical damage in cardiac tissues but can also originate from the nonlinear dynamics of the heart. It is believed that period doubling in the beating of a heart is a precursor of arrhythmias.
    The goal here is to develop a method for the suppression of period doubling. This study uses a new control method, known as T+T-, to affect the bifurcation point in a dynamical system. The T+T- method can suppress period doubling in the beating of the heart. Furthermore, the shape of the attractor constructed from the beating of the heart under the T+T- control can also provide useful information about the dynamical state of the heart.

    摘要 v Abstract vii 誌謝 ix 目錄 xi 圖目錄 xiii 表目錄 xv 使用符號與定義 xvii 一 緒論 1 1.1 心臟結構與傳導系統 2 1.2 可激發系統與螺旋波 3 1.3 動作電位與興奮收縮耦聯 5 1.4 分岔現象(Bifurcation) 8 1.5 Logistic Map 10 1.6 回授調控去除倍週期 12 1.6.1 Delayed Feedback Control, DFC 14 1.6.2 T+T− 15 1.7 Non-monotonic APD Restitution 15 1.8 總結 17 二 實驗方法及裝置 19 2.1 樣品及藥品準備 19 2.2 Langendorff 灌流系統 20 2.3 訊號量測與調控系統 21 2.4 調控方法 25 2.4.1 Proportional Perturbation Feedback Control, PPFC 26 2.4.2 T+T− 26 2.4.3 T+T0T− 26 2.4.4 T+T−_Rand / T+T−_Reverse 27 2.5 實驗流程 27 2.6 分析方法 28 2.6.1 Poincaré map 28 三 實驗結果 31 3.1 無控制下的動力學現象 31 3.2 控制成效 35 3.2.1 消除倍週期 36 3.2.2 避免倍週期 38 3.2.3 控制強度過大情況 39 3.2.4 控制強度不足情況 40 3.3 吸引子差異 41 3.3.1 形狀序列 42 3.3.2 吸引子形狀的應用 45 3.4 回饋控制的滯留效應 48 3.5 心室顫動(VF)的消除 51 四 總結 55 4.1 無控制下的動力學現象 55 4.2 控制成效 55 4.3 吸引子形狀 56 4.4 滯留效應 56 4.5 心室顫動的消除 56 4.6 實驗的假設與限制 56 參考文獻 57 附錄A 裝置列表 59 附錄 B Solutions 61 B.1 The concentration of component in KHB solution 61 B.2 Preparation 62 B.2.1 KHB solution for rat heart 62 B.2.2 Other solution for rat heart 63 附錄 C 電極製作方法 65 附錄 D 程式碼 69 D.1 T+T− 調控程式 (GUI) 69 D.2 T+T− 調控程式 (Schedule) 72 D.3 PPTL 調控程式 (GUI) 74 D.4 PPTL 調控程式 (Schedule) 76 D.5 分析程式 79 D.6 實驗中即時監看程式 86 D.7 其他子程式 90

    1. Safar, P. Cerebral resuscitation after cardiac arrest: a review. Circulation 74, IV138–153. issn:
    0009-7322 (Dec. 1986).
    2. Mehra, R. Global public health problem of sudden cardiac death. Journal of Electrocardiology. ISCE
    32nd Annual Conference 40, S118–S122. issn: 0022-0736 (2007).
    3. Karma, A. Physics of Cardiac Arrhythmogenesis. Annual Review of Condensed Matter Physics 4,
    313–337 (2013).
    4. Qu, Z., Hu, G., Garfinkel, A. & Weiss, J. N. Nonlinear and stochastic dynamics in the heart.
    Physics Reports. issn: 0370-1573. doi:10 . 1016 / j . physrep . 2014 . 05 . 002. <http : / /
    www . sciencedirect . com / science / article / pii / S037015731400204X> (visited on
    09/15/2014) (May 2, 2014).
    5. Dosdall, D. J., Fast, V. G. & Ideker, R. E. Mechanisms of Defibrillation. Annu Rev Biomed Eng 12,
    233–258. issn: 1523-9829 (Aug. 15, 2010).
    6. in. Wikipedia, the free encyclopedia Page Version ID: 715177840 (Apr. 14, 2016). <https://en.
    wikipedia . org / w / index . php ? title = Electrical _ conduction _ system _ of _ the _
    heart&oldid=715177840> (visited on 04/28/2016).
    7. Tyson, J. J. & Keener, J. P. Singular perturbation theory of traveling waves in excitable media (a
    review). Physica D: Nonlinear Phenomena 32, 327–361. issn: 0167-2789 (1988).
    8. Ikonnikov, G. & Wong, E. Physiology of cardiac conduction and contractility | McMaster Pathophys-
    iology Review <http://www.pathophys.org/physiology- of- cardiac- conduction-
    and-contractility/> (2016).
    9. Fox, J. J., Gilmour, R. F. & Bodenschatz, E. Conduction Block in One-Dimensional Heart Fibers.
    Phys. Rev. Lett. 89, 198101 (2002).
    10. Richard E. Klabunde. CV Physiology: Sinoatrial Node Action Potentials Cardiovascular Physiol-
    ogy Concepts, ISBN:978-1-4511-1384-6. <http://www.cvphysiology.com/Arrhythmias/
    A004.htm> (2016).
    11. Richard E. Klabunde. CV Physiology: Non-Pacemaker Action Potentials Cardiovascular Physiol-
    ogy Concepts, ISBN:978-1-4511-1384-6. <http://www.cvphysiology.com/Arrhythmias/
    A006.htm> (2016).
    12. PhD, R. E. K. Cardiovascular Physiology Concepts Second edition. 256 pp. isbn: 978-1-4511-1384-6
    (LWW, Philadelphia, PA, Sept. 6, 2011).
    13. Qu, Z., Xie, Y., Garfinkel, A. & Weiss, J. N. T-Wave Alternans and Arrhythmogenesis in Cardiac
    Diseases. Front Physiol 1. issn: 1664-042X. doi:10.3389/fphys.2010.00154. <http://www.
    ncbi.nlm.nih.gov/pmc/articles/PMC3028203/> (visited on 12/15/2015) (Nov. 29, 2010).
    14. Bass, B. G. Restitution of the action potential in cat papillary muscle. American Journal of Phys-
    iology – Legacy Content 228. bibtex: bass_restitution_1975, 1717–1724. issn: 0002-9513 (June 1,
    1975).
    15. Nolasco, J. B. & Dahlen, R. W. A graphic method for the study of alternation in cardiac action
    potentials. Journal of Applied Physiology 25, 191–196. issn: 8750-7587, 1522-1601 (Aug. 1, 1968).
    16. Ward, G., Shrier, A. & Glass, L. M. Electrical alternans and period doubling bifurcations. Computers
    in cardiology 562. issn: 0276-6574. <https : / / www . researchgate . net / publication /
    237607942_Electrical_alternans_and_period_doubling_bifurcations> (visited
    on 06/24/2016) (Jan. 1, 1984).
    17. Kalb, S. S. et al. The Restitution Portrait:A New Method for Investigating Rate-Dependent Resti-
    tution. Journal of Cardiovascular Electrophysiology 15, 698–709. issn: 1540-8167 (2004).
    18. Qu, Z. & Weiss, J. N. Dynamics and Cardiac Arrhythmias. Journal of Cardiovascular Electrophys-
    iology 17, 1042–1049. issn: 1540-8167 (2006).
    19. Goldhaber, J. I. et al. Action Potential Duration Restitution and Alternans in Rabbit Ventricular
    Myocytes The Key Role of Intracellular Calcium Cycling. Circulation Research 96, 459–466. issn:
    0009-7330, 1524-4571 (Mar. 4, 2005).
    20. Chialvo, D. R., Gilmour Jr, R. F. & Jalife, J. Low dimensional chaos in cardiac tissue. Nature 343.
    bibtex: chialvo_low_1990, 653–657 (1990).
    21. May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–467
    (1976).
    22. Garfinkel, A. Controlling Cardiac Chaos. Science. <http://escholarship.org/uc/item/
    1wr2k55m> (visited on 09/09/2014) (Aug. 1, 1992).
    23. Christini, D. & Collins, J. Real-time, adaptive, model-independent control of low-dimensional chaotic
    and nonchaotic dynamical systems. IEEE Transactions on Circuits and Systems I: Fundamental
    Theory and Applications 44, 1027–1030. issn: 1057-7122 (1997).
    24. Jordan, P. N. & Christini, D. J. Adaptive Diastolic Interval Control of Cardiac Action Potential
    Duration Alternans. Journal of Cardiovascular Electrophysiology 15, 1177–1185. issn: 1540-8167
    (2004).
    25. Christini, D. J. et al. Control of Electrical Alternans in Canine Cardiac Purkinje Fibers. Phys. Rev.
    Lett. 96, 104101 (2006).
    26. Dubljevic, S., Lin, S.-F. & Christofides, P. D. Studies on feedback control of cardiac alternans.
    Computers & Chemical Engineering. Networked and Complex Systems S.I.Control of Networked
    and Complex Process Systems 32, 2086–2098. issn: 0098-1354 (2008).
    27. Sridhar, S. et al. Suppression of cardiac alternans by alternating-period-feedback stimulations. Phys.
    Rev. E 87, 042712 (2013).
    28. Franz, M. R. The Electrical Restitution Curve Revisited: Journal of Cardiovascular Electrophysiology
    14, S140–S147. issn: 1540-8167 (2003).
    29. Watanabe, M., Otani, N. F. & Gilmour, R. F. Biphasic Restitution of Action Potential Duration and
    Complex Dynamics in Ventricular Myocardium. Circ Res 76, 915–921. issn: 0009-7330, 1524-4571
    (May 1, 1995).
    30. Animals, N. R. C. ( C. f. t. U. o. t. G. f. t. C. Ũ. o. L. Guide for the Care and Use of Laboratory
    Animals <http://www.ncbi.nlm.nih.gov/books/NBK54050/> (visited on 06/24/2016)
    (National Academies Press (US), 2011).
    31. Hirth, C., Borchard, U. & Hafner, D. Effects of the calcium antagonist diltiazem on action potentials,
    slow response and force of contraction in different cardiac tissues. Journal of Molecular and Cellular
    Cardiology 15, 799–809. issn: 0022-2828 (1983).

    QR CODE
    :::