跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭皓友
Hao-Yu Cheng
論文名稱: 影響蝴蝶辨識模型能力之因素探討與比較
Discussion and comparison of factors affecting the ability of butterfly identification model
指導教授: 洪盟凱
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 深度學習影像辨識卷積神經網路dropout池化層優化演算法
外文關鍵詞: Deep Learning, Image recognition, Convolutional neural network, dropout, pooling layer, optimization algorithm
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 影像辨識是人工智慧中的熱門領域,可以應用在許多地方,例如手寫數字辨識、車牌辨識、人臉辨識、物體辨識等等。使用深度學習的方法可以有效的提取特徵且降低人力成本,但要創造出一個好的分類模型需要考量很多因素。例如:合適的模型架構,合適的優化方法、合適的參數設定等等。
    本實驗的蝴蝶圖像取自ImageNet,且使用卷積神經網路的方法建構蝴蝶辨識模型,並選定幾種可能影響蝴蝶辨識模型的因素作為探討與比較的對象。由實驗結果發現,dropout比例的大小、池化層的大小與擺放位置、相異的優化演算法及相異的卷積層層數皆會影響蝴蝶辨識模型的能力。因此,在建構模型時,這些因素都須慎重選擇,不可忽視它們對模型的影響力。


    Image recognition is popular in artificial intelligence and can be applied to many fields, such as handwritten digit recognition, license plate recognition, face recognition, object recognition and so on. Using deep learning methods can effectively extract features and reduce costs. But, creating a good classification model requires consideration of many factors. For example: the appropriate model architecture, the appropriate optimization method, the appropriate parameter settings, and so on.
    The butterfly images of this experiment are taken from ImageNet, and the butterfly identification models are constructed by the convolutional neural network. Several factors that may affect the butterfly identification model are selected as the objects of discussion and comparison. It is observed from the experimental results that the size of the dropout ratio, the size and placement of the pooling layer, the different optimization algorithms and the different layers of convolution layers all affect the ability of the butterfly identification model. Therefore, when constructing the model, these factors must be carefully chosen, and their influence on the model cannot be ignored.

    目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 一、緒論 1 1.1機器學習概要簡介 1 1.2研究動機 3 1.3研究目的 3 1.4研究限制 3 二、論文背景知識與相關文獻探討 4 2.1 單層感知機(Perceptron) 4 2.2 多層感知機(Multilayer Perceptron) 5 2.3 激活函數(Activation Function) 6 2.3.1 Sigmoid函數 8 2.3.2 ReLU函數 9 2.4 過擬合(Overfitting) 10 2.4.1 Dropout 10 2.5梯度下降優化方法 11 2.5.1 預設學習率的參數更新 12 2.5.2 自適應優化方法(Adaptive Learning Rate) 13 2.6 卷積神經網路(Convolutional Neural Network) 16 2.6.1 卷積層(Convolutional Layer) 17 2.6.2 池化層(Pooling Layer) 19 2.6.3 全連接層(Fully Connected Layer) 20 三、數據庫與實驗模型介紹 21 3.1 實驗框架介紹 21 3.2 圖片庫介紹 22 3.3 數據集製作 23 3.4 實作流程 24 3.5 模型結構 24 四、結果與討論 25 4.1 Dropout比例於模型的影響 25 4.2池化層差異對模型的影響 29 4.3相異優化方法在模型的表現 35 4.4相異的卷積層層數在模型的表現 42 五、結論與未來展望 47 參考文獻 49

    [1].黃安埠 (2017)。深入淺出深度學習-原理剖析與Python實踐。電子工業出版社。
    [2].鄭澤宇、顧思宇 (2017)。Tensorflow實戰Google深度學習框架。電子工業出版社。
    [3].林大貴 (2017)。TensorFlow + Keras深度學習人工智慧實務應用。博碩出版社。
    [4].李宏毅 (2016)。Machine Learning。
    (http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html )。
    [5].斎藤康毅 (2017)。Deep Learning – 用Python進行深度學習的基礎理論實作。碁峰資訊股份有限公司。
    [6].Nikhil Buduma (2018)。Deeping Learning 深度學習基礎 – 設計下一代人工智慧演算法。碁峰資訊股份有限公司。
    [7].Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09.
    [8].Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research,2121-2159.
    [9].Glorot, X., Bordes, A., and Bengio, Y. (2011a). Deep sparse rectifier neural networks. In AISTATS’2011 .
    [10].Goodfellow, I. J., Bengio, Y., and Courville, A. (2016). Deep Learning . https://www.deeplearningbook.org.
    [11].He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv:1512.03385 .
    [12].Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980 .
    [13].Krizhevsky, A., Sutskever, I., and Hinton, G. (2012b). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25(NIPS’2012).
    [14].Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Nerual networks: the official journal of the International Neural Network Society,12:145-151.
    [15].Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information storage and organization in the brain. Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386–408.
    [16].Ruder, S. (2017). An overview of gradient descent optimization algorithms. arXiv:1609.04747 .
    [17].Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
    [18].Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.
    [19].Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014a). Going deeper with convolutions. Technical report, arXiv:1409.4842.
    [20].Tieleman, T. and Hinton, G. ( 2012 ).Lecture 6.5- RMSProp:Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning.

    QR CODE
    :::