跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖國豪
Kuo-Hao Liao
論文名稱: 符合照明光型之紅外線 SMD LED 之封裝一次光學設計
First - order optical design of IR SMD LED for fitting target illumination
指導教授: 孫慶成
Ching-Cherng Sun
楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 91
中文關鍵詞: 一次光學封裝透鏡
外文關鍵詞: First-order optics, Package lens
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種符合照明光形之紅外線 SMD LED 之封裝一次光學設計,此方法透過對目標配光曲線、光源配光曲線與模擬配光曲線的積分運算建構出符合目標配光曲線的一次光學設計。
    在本論文的研究中,先針對目前市面上各種封裝形式的紅外線 LED進行優劣分析,總結出最理想的封裝形式為SMD-Ceramic封裝形式,接著分析一次光學設計的相關文獻資料,再根據不足的部份提出我們的優化方法,根據優化過後的模擬結果,模擬配光曲線與目標配光曲線的NCC平均達99.84%,接著,我們將LED封裝完成,量測其配光曲線,最後,將實測、模擬與目標配光曲線進行比對,實測與模擬配光曲線的NCC平均達99.64%,實測配光曲線與目標配光曲線的NCC平均達99.72%。


    In this thesis, we propose a first-order optical design of infrared SMD LED that matches the target intensity distribution. In this design, we design the first-order optical lens that the result intensity distribution can match to target intensity distribution through integrating the target、light source and simulation intensity distribution.
    First, the study analyzes various commercial infrared LED packages and summed up the most suitable package is SMD package with ceramic substrate. Second, this thesis proposes a method to optimize first-order optical design after we analyze related literature. The simulation result shows the average NCC of intensity distribution between final design of our method and target is 99.84%. Finally, we complete the assembly of infrared SMD LED and measure the intensity distribution. The average NCC of intensity distribution between simulation and measurement is 99.64%. The average NCC of intensity distribution between target and measurement is 99.72%.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 論文大綱 15 第二章 基礎原理 17 2-1 引言 17 2-2 發光二極體晶片基本介紹 17 2-3 中場擬合法 20 2-4 輻射度量學 22 2-5 幾何光學 26 第三章 紅外線SMD LED封裝一次光學設計 30 3-1目標遠場配光曲線、發光二極體晶片與透鏡材質 31 3-2 透鏡曲率計算 42 3-3 光學模擬與補償係數計算 48 3-4 紅外線 SMD LED成品封裝與光學量測 64 第四章 結論 68 參考文獻 71 中英文名詞對照表 76

    1. IHS Markit., Video surveillance:How technology and the cloud is disrupting the market, https://cdn.ihs.com/www/pdf/IHS-Markit-Technology-Video-surveillance.pdf.
    2. Aclarity Systems., Will IP cameras replace alalog cameras?, https://aclaritysystems.com/blogpost/.
    3. Statista, Analogue and IP camera market size worldwide from 2011 to 2017, https://www.statista.com/statistics/534045/global-analogue-and-ip-camera-market/.
    4. S. Isokawa, and H. Toda, “Semiconductor light emitting device with increased luminous power,” United States Patent, US6121637 (1998).
    5. J. Thillays, “Electroluminescent semiconductor device containing current controlling rectifying device,” United States Patent, US3739241(1972).
    6. “Lamps, incandescent, aircraft service, single contact midget flanged base, T-1-3/4 bulb,” Military Specifications and Standards (1997).
    7. J. Okazaki, and M. Katoh, “Leadless chip-type light emitting element,” United States Patent, US5298768A(1992).
    8. C. N. Tan, S. L. Oon, and C. K. Tan, “Ceramic light emitting device,” United States Patent, US20090219722A1 (2008).
    9.C. P. Hussell, P. S. Andrews, F. A. Tudorica, and R. F. Welch, “Ceramic-based light emitting diode (LED) devices, components and methods,” United States Patent, US8895998B2 (2012).
    10. Osram GmbH., DS234 luxeon ir compact for automotive datasheet, https://www.lumileds.com/uploads/811/DS234-luxeon-ir-compact-for-automotive-datasheet-pdf.
    11. Osram GmbH., Osram Infrared Emitter (850nm) Version 1.6 SFH 4550, https://www.osram.com/media/resource/hires/osram-dam-2496286/SFH%204550.pdf.
    12. Vishay Intertechnology, Inc., VISHAY High Speed Infrared Emitting Diode, 940 nm, https://www.vishay.com/docs/84581/vsly3943.pdf.
    13. Osram GmbH., Power TOPLED® Lens, SFH 4258, https://www.osram.com/media/resource/hires/osram-dam-5824078/SFH+4258_EN.pdf.
    14. Osram GmbH., OSLON® Black, SFH 4715AS, https://www.osram.com/ecat/OSLON%C2%AE%20Black%20SFH%204715AS/com/en/class_pim_web_catalog_103489/global/prd_pim_device_2219819/.
    15. Vishay Intertechnology, Inc., VISHAY High Power Infrared Emitting Diode,850 nm,Surface Emitter Technology, http://www.vishay.com/docs/84908/vsmy98525ds.pdf.
    16. Lumileds Holding B.V., LUXEON IR Domed Line Product Datasheet, https://www.lumileds.com/uploads/685/DS191-luxeon-ir-domed-line-datasheet-pdf.
    17. B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 130-138 (2002).
    18. S. J. Lee, “Light-emitting diode lamp design by monte carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
    19. N. T. Tran and F. G. Shi, “LED package design for high optical efficiency and low viewing angle,” in Microsystems Packaging, Assembly and Circuits Technology (IEEE, 2007), 10-13(2007).
    20. Hsu, H. Ching, C. J. Wang, H. R. Lin, and P. Han,“Optimized semi-sphere lens design for high power LED package,” Microelectron Reliab 52, 894-899 (2012).
    21. H. J. Rounds, “A note on carborundum,” Electrical World 19, 309 (1907).
    22. G. Destriau, “Scintillations of zinc sulfides with alpha-rays,” J. Chimie Physique 33, 587 (1936).
    23. H. Welker, “On new semiconducting compounds,”Zeitschrift für Naturforschung 7a, 744 (1952).
    24. H. Welker, “On new semiconducting compounds II,”Zeitschrift für Naturforschung 8a, 248 (1953).
    25. S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-lightemitting diodes,” Jpn. J. Appl. Phys. 32, L8 (1993).
    26. J. M. Palmer and B. G. Grant, The Art of Radiometry (Society of Photo Optical, 2009).
    27. X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energ. Combust. 56, 1-32 (2016).
    28. 林旻賢,高功率LED的散熱方式與溫度量測分析,國立交通大學平面顯示技術碩士學位學程碩士論文,中華民國九十九年。
    29. M. Krames, O. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160-175 (2007).
    30. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,”Opt. Lett. 31, 2193-2195 (2006).
    31. W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572-7577 (2007).
    32. CIE 1988 2° spectral luminous efficiency functions of photopic vision, CIE Publication No. 86 (1988b).
    33. V. N. Mahajan, Fundamentals of Geometrical Optics (Society of Photo Optical, 2014).
    34. Illuminating Engineering Society, ANSI/IES RP-16-17, Nomenclature and Definitions for Illuminating Engineering, https://www.ies.org/standards/definitions/.
    35. F. L. Pedrotti and L. M. Pedrotti, Introduction to Optics (PrenticeHall, Englewood Cliffs, N.J., 1987).
    36. E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, 2002).
    37. V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE PRESS, Washington, 1998).
    38. Epileds Technologies, inc., BN-D2222A-A3(mW)(350mA), http://em-el.pl/allegro/led/BN-D2222A-A3.pdf.
    39. Epileds Technologies, inc., BN-D3030F-A3(mW)(350mA), http://em-el.pl/allegro/led/BN-D3030F-A3.pdf.
    40. Dow, Dow Corning OE-6636 Optical Encapsulant, http://www.casmoon.com/upfile/file/20141016/2014101611091858710.pdf.
    41. M. J. Sing, K. H. Kim, and S. Hong, “Simulation-based optimization of cure cycle of large area compression molding for LED silicone lens,” Adv. Mater. Sci. Eng. 2015, 1–11 (2015).
    42. Synopsys, Inc., LightTools optical simulation, https://www.synopsys.com/optical-solutions.html.
    43. Radiant Vision Systems, LLC, SIG–400 Source Imaging Goniometer, https://www.radiantvisionsystems.com/sites/default/files/library-documents/Radiant_SPEC_SIG-400-Source-Imaging-Goniometer_EN.pdf.
    44. Radiant Vision Systems, LLC, ProSource Software, https://www.radiantvisionsystems.com/sites/default/files/library-documents/Radiant_SPEC_ProSource_EN.pdf.
    45. F. E. Nicodemus, Self-Study Manual on Optical Radiation Measurements:Part I–Concepts, NBS Technical Note 910-1, 68(1976).
    46. Dassault Systèmes SolidWorks Corporation, 3D CAD Design Software Solidworks, https://www.solidworks.com/.
    47. D. Lu and C. P. Wong, Materials for Advanced Packaging (Springer, 2008).

    QR CODE
    :::