跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉志慶
Zh-Qing Liu
論文名稱: 醋酸戊酯之相轉移催化水解以合成正戊醇之研究
指導教授: 王天財
Ten-Tsai Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 72
中文關鍵詞: 水解相轉移催化醋酸戊酯正戊醇
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討初態為:醋酸戊酯/水、NaOH、PTC之相轉移催化水解以合成正戊醇之實驗。在實驗之前先行測定醋酸戊酯在不同氫氧化鈉水溶液中之溶解度得知,在氫氧化鈉水溶液濃度大於5 % (wt%)時,醋酸戊酯之溶解度便降至0.001% (wt%),即幾乎不溶於水。因此可以判定反應發生在有機相。衍導在虛穩定狀態時之總速率方程式得知,影響反應的因素項目包括有:相轉移催化劑陽離子(Q+)之結構、相轉移催化劑之劑量、有機相與水相體積比、氫氧化鈉水溶液之濃度、攪拌速率與溫度等,並經實驗証明與反應速率方程式得相同結果。
    在影響反應之因素探討當中,相轉移催化劑的存在是必要的,若無相轉移催劑,反應幾乎不會發生,然而催化劑的劑量大小並不是決定反應快慢的重要因素,提高氫氧化鈉水溶液的濃度反而更可以加速產率達至完全轉化。因為在高濃度之氫氧化鈉水溶液會影響相轉移催化劑之分佈,促使影響反應速率之(QOH)離子對分佈在有機相遠大於在水相、而使得反應快速進行。選擇一組適當反應條件為:醋酸戊酯25ml、水25ml、氫氧化鈉13.9338 g、BzBu3NCl 0.87g、500 rpm、25oC,其反應約1小時即可完全水解成正戊醇。


    目 錄 摘要 …………………………………………………………………I 目錄 …………………………………………………………………II 圖目錄 ………………………………………………………………III 符號說明 ……………………………………………………………IV 第一章 緒論 1-1 相轉移催化之起源與定義 …………………………………….1 1-2相轉移催化之原理及系統形態 ……………………………….2 1-2-1相轉移催化之原理…………………………………………2 1-2-2相轉移催化之系統形態……………………………………2 1-3相轉移催化劑之種類……………………………………………4 1-4戊醇之經濟性、來源與用途……………………………………7 1-5戊醇之合成………………………………………………………8 1-5-1傳統工業合成法……………………………………………8 1-5-2戊醇之相轉移合成法………………………………………9 1-5-3戊醇之非相轉移合成法……………………………………10 1-6本研究之動機與主旨……………………………………………12 第二章 理論 2-1 親核取代反應 ………………………………………………….14 2-1-1 單分子親核取代反應 …………………………………….14 2-1-2 二分子親核取代反應 …………………………………….15 2-1-3 相轉移催化劑之親核取代反應 ………………………….16 2-2 液-液反應系統之化學程序與質傳程序 ……………………… 16 2-3液-液系統中正戊醇之總生成速率方程式………………………18 2-4液-液系統中影響正戊醇之總生成速率之因素…………………23 2-4-1 相轉移催化劑陽離子(Q+)結構之影響……………………23 2-4-2 相轉移催化劑劑量之影響…………………………………23 2-4-3 水相[OH]濃度之影響………………………………………23 2-4-4 攪拌速率之影響……………………………………………24 2-4-5 有機相與水相體積比之影響………………………………24 2-4-6 溫度之影響…………………………………………………24 第三章 實驗部分 3-1 藥品 ……………………………………………………………25 3-2 實驗裝置及分析儀器 …………………………………………27 3-2-1 實驗裝置 …………………………………………………27 3-2-2 氣相層析儀 ………………………………………………27 3-2-3 離子層析儀 ………………………………………………29 3-3 實驗之操作 ……………………………………………………29 3-4 樣品分析 ………………………………………………………29 3-4-1 氣相層析儀(GC)之分析 …………………………………29 3-4-2 離子層析儀(IC)之分析 …………………………………30 3-5 實驗步驟 ………………………………………………………32 3-5-1相轉移催化劑結構及水量對產率之影響 ………………..32 3-5-2醋酸戊酯於不同NaOH濃度之溶解度之測定……………32 3-5-3不同溶劑對BzBu3NCl之分佈之影響……………………32 3-5-4在二溴乙烷中不同NaOH濃度對之分佈之影響…………32 3-5-5在正戊醇中不同NaOH濃度對之分佈之影響……………33 3-5-6 相轉移催化劑劑量對產率之影響 ……………………….33 3-5-7氫氧化鈉濃度對產率之影響………………………………34 3-5-8 攪拌速率對產率之影響 ………………………………….34 3-5-9 溫度對產率之影響 ……………………………………….34 第四章 結果與討論 4-1相轉移催化劑結構及水量對產率之影響……………………….35 4-2醋酸戊酯於不同NaOH濃度之溶解度之測定……………………35 4-3不同溶劑對BzBu3NCl之分佈之影響……………………………36 4-4在二溴乙烷中不同NaOH濃度對之分佈之影響…………………36 4-5在正戊醇中不同NaOH濃度對之分佈之影響……………………37 4-6相轉移催化劑劑量對產率之影響 ………………………………38 4-7氫氧化鈉濃度對產率之影響…………………………………….39 4-8攪拌速率對產率之影響 …………………………………………39 4-9溫度對產率之影響 ………………………………………………40 4-10適當生產條件 ………………………………………………….41 第五章 結論 ……………………………………………………..61 參考文獻 ……………………………………………………………63 附錄 …………………………………………………………………69 附錄一之a. Amyl acetate對內標準(九烷)之氣相層析校正曲線………………………………………………………………………70 附錄一之b. Amyl alcohol對內標準(九烷)之氣相層析校正曲線………………………………………………………………………71 附錄二. Cl-對內標準(NO3-)之離子層析校正曲線……………….72

    [1]J. Jarrouse and C. R. Hebd. Seances Acad. Sci. Ser., C232, 1424 (1951).
    [2]C. M. Starks, “Phase-transfer Catalysis. I. Heterogeneous Reaction Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”, J. Am. Chem. Soc., 93(1), 195 (1971).
    [3]朱紫瑛, “醋酸丙烯酯之相轉移催化水解以合成丙烯醇及該法應用於其它醋酸酯之水解之研究”, 國立中央大學化工碩士論文(1995).
    [4]張詠鈞, “氯化戊烷之相轉移催化醋酸根取代以合成醋酸戊酯之研究”, 國立中央大學化工碩士論文(1998).
    [5]E. Angeletti, P. Tundo and P. Venturello, “Gas-Liquid Phase-Transfer Catalysis: Catalytic and Continuous Transesterification Reaction”, J Org. Chem., 48, 4106-8(1983).
    [6]吳和生, “液-固-液三相反應動力學之應用-醚酯類”, 第十五屆台灣區觸媒及反應工程研討會論文集(1997).
    [7]周子卿, “有機金屬催化氫化以合成環己烷之研究”, 國立中央大學化工碩士論文(1999).
    [8]P. Tundo and P. Venturello, “Silica Gel Supported Phosphonium Salts as Micellar and Phase-Transfer Catalysis”, Tetrahedron Lett. 21, 2581(1984).
    [9]Starks C. M., “Selecting a Phase Transfer Catalysis”, Chemtech, 110 (1980).
    [10]P. Hodge, and D. C. Sherrington, “Polymer-supported Reaction in Organic Synthesis”, John Wiley and Sons, 1980.
    [11]徐金榮, “葡萄糖之有機金屬相轉移催化氫化研究”, 國立中央大學化工碩士論文(1994).
    [12]Kirk-othmer, “Encyclopedia of Chemical Technology”, Fourth edition, vol.2, p709-729, 1991.
    [13]W. L. Faith et al., Eds. (John Wiley, New York, 2nd ed., 1957)“Industrial Chemical”p 107-114.
    [14]Kirkpatrick Chemical Engineering Achievement Award, Chem. Eng. 84, 110(Dec. 5, 1997)
    [15]S. Asai, H. Nakamura,“Alkaline Hydrolysis Of N-Butyl Acetate With Phase Transfer Catalyst Aliquat 336”,Aiche J.,Vol.38,No.3, 397-404.1992.
    [16]A. Abdel Razik, M. S. Metwally,“Steric Substituent Effect On The Resin Catalyzed Hydrolysis Of Alkyl Acetate Esters”,React. Kinet. Catal. Lett., Vol.48, No 1, 279-290,1992.
    [17]S. Affrossman , J. P. Murray,“Kinetics Of The Hydrolysis In 1:3 Water-Aacetone Of Aliphatic Esters Having Substituents In The Alkyl Group, Catalysed By An Acid Resin Or An Acidic Solution”,J. Chem. Soc. (B),579-582,1968.
    [18]S. Hiraoka, I. Yamada,“Measurement Of Continuous- Phase Mass Transfer Coefficient At Droplet Surface In Liquid- Liquid Mixing Vessel By Chemical Reaction Method”, J. Chem. Eng. Jp., Vol.23, No.2, 166-170, 1990.
    [19]S. Alwan, S. Hiraoka, I. Yamada,“Extraction Rate Of N-Amyl Acetate With Alkaline Hydrolysis In Aqueous Phase ”, Chem. Eng. Commun. Vol.22, 317-328, 1983.
    [20]M. Toba, S. I. Tanaka,“Synthesis Of Alcohols And Diols By Gydrogenation Of Carboxylic Acids And Esters Over Ru-Sn-Al2O3 Catalysts”, Applied Catalysis A: General 189, 243-250, 1999.
    [21]K. J. Smith, C. W. Young,“Development Of A Kinetic Model For Alcohol Synthesis Over A Cesium-Promoted Cu / ZnO Catalyst”, Ind. Eng. Chem. Res. 30, 61-71, 1991.
    [22]A. K. Gunturu, E. L. Kugler,“A Kinetic Model For The Synthesis Of High-Molecular-Weight Alcohols Over A Sulfided Co-K-Mo/C Catalyst”, Ind. Eng. Chem. Res. 37,2107-2115, 1998.
    [23]E. M. Calverley, R. B. Anderson,“synthesis of higher alcohols over promoted copper catalyst”, journal of catalysis 140, 434-440, 1987.
    [24]L. M. Starks, and C. Liotta, “Phase Transfer Catalysis, Principles and Techniques”, Academic Press, New York, 1978.
    [25]McMurry, “Organic Chemistry”, Cole Publishing Company, Montery, California, 307 (1984).
    [26]R. T. Morrison, and R. N. Boyd, “Organic Chemistry”, 5th, Allyn & Bacon, lnc., 183 (1987).
    [27]張其晃, “有機鹵化物與季銨鹼之親核雙取代反應研究”, 國立中央大學化工碩士論文(1991).
    [28]D. Forster, J. Chem. Soc., Chem. Commun., 918 (1975).
    [29]D. Landini, A. Maia and F. Montanari, J. Chem. Soc., Chem. Comm., 112 (1977)
    [30]D. Feldman, D. S. Lew and M. Rabinovitz, “Nucleophilic Aromatic Substitution by Hydroxide Ion under Phase-Transfer Catalysis Conditions Fluorine Displacement in Polyflurobenzene”, J. Org. Chem. 56, 7350 (1991).
    [31]Wang T. T., T. C. Huang and M. Y. Yeh, “Benzyl Ether from Phase Transfer Catalyzed Strongly Alkaline Hydrolysis of Benzyl Chloride”, J. Mol. Cat. 57, 271 (1990).
    [32]T. T. Wang, T. C. Huang and M. Y. Yeh, “Benzyl Acetate from Phase Transfer Catalyzed Acetate Displacement of Benzyl Chloride”, Chem. Eng Comm. 100, 135 (1991).
    [33]E. V. Dehmlow, and J. Schmidt, Tetrahedron Lett., 95 (1976).
    [34]郭啟忠, “季銨鹽之溶解度及其在有機相-水相系統中之締合與分佈”,國立中央大學化工所碩士論文(1996).
    [35]劉叔杰, “丙烯基氯之相轉移催化水解以合成丙烯醇/丙烯醚”, 國立中央大學化工所碩士論文(1994).
    [36]S. Nagata, “Mixing Principles and Application”, Ch.7, Haksted Press, New York, 1975.
    [37]湯朝洲, “丙烯基氯之相轉移催化醋酸根取代反應以合成醋酸丙烯酯之研究”, 國立中央大學化工所碩士論文(1994).
    [38]王天財、黃定加與葉茂榮, “芐基氯之相轉移催化取代及其與叔胺之季銨化研究”,國立成功大學化工所博士論文(1990).

    QR CODE
    :::