| 研究生: |
詹家瑋 Chia-Wei Chan |
|---|---|
| 論文名稱: |
探討mir-100對於果蠅蛹期存活率的影響 mir-100 does not influence pupal survival rate in Drosophila melanogaster |
| 指導教授: |
葉淑丹
Shu-Dan Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 果蠅 、轉錄 、mir-100 、flea 跳躍因子 |
| 外文關鍵詞: | Drosophila melanogaster, primary transcript, mir-100, flea transposon |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在果蠅(D. melanogaster)中,已知mir-100 會在果蠅發育時的前蛹期
開始表現,先前研究發現在Canton S 品系中的mir-100 表現量較其他品系果
蠅來的低,且蛹期存活率遠低於其他品系的果蠅,而且該品系基因組中mir-
100 下游有一段flea 跳躍因子的存在,推測其可能影響了mir-100 的表現
量。本論文研究延續前人研究結果,測試了mir-100 primary transcript 的轉
錄,在RT-PCR 的實驗結果中發現帶有flea 跳躍因子的果蠅,其mir-100 所
在的let-7 cluster 在primary transcript 的過程中會被分成兩個或以上的片段。
接著利用遺傳背景控制與miRNA sponge 的方法檢測mir-100 對蛹期存活率
的影響。在置換過染色體且具有flea 跳躍因子的果蠅,其蛹期存活率顯著地
低於其他品系,但是利用抑制mir-100 表現量之品系的果蠅測試其蛹期存活
率,結果發現其蛹期存活率並無明顯差異。此兩種方法所測得mir-100 對於
果蠅蛹期存活率的影響不同,需更進一步的實驗來驗證。
In Drosophila melanogaster, it is known that the expression of mir-100 starts at the
pre-pupal stage. The expression level of mir-100 in a strain isolated from Canton S
strain, named CS-UCI, is lower than that of other strains and the survival rate of
this strain at the pupal stage is much lower than that of other strains, as found in
the previous studies. The previous study revealed the presence of a flea transposon
insertion in the downstream of mir-100, presumably affecting the expression level
of mir-100. In this study, the primary transcript of mir-100 was examined by RTPCR.
Based on the results of three RT-PCR experiments, the let-7 cluster,
including mir-100, was transcribed into more than two primary transcripts in CSUCI
flies. Next, the chromosome replacement of X and 3rd chromosomes in CSUCI
and control strains was carried out to control the genetic background and the
pupal survival rate was tested at 25°C . The results showed that flies carrying flea
insertion exhibited lower survival rate at the pupal stage in comparison of other
strains. However, the pupal survival rate did not change when the miR-100
expression level was decreased by mir-100 sponge. Further experiments on
measuring mir-100 expression level in genetic background controlled flies and
mir-100 sponge flies are needed to resolve the contradictory results in pupal
survival rate.
Altuvia, Y., P. Landgraf, G. Lithwick, N. Elefant, S. Pfeffer et al., 2005 Clustering
and conservation patterns of human microRNAs. Nucleic Acids Res 33:
2697-2706.
Ambros, V., 2003 MicroRNA Pathways in Flies and Worms. Cell 113: 673-676.
Aravin, A. A., M. Lagos-Quintana, A. Yalcin, M. Zavolan, D. Marks et al., 2003 The
small RNA profile during Drosophila melanogaster development. Dev Cell
5: 337-350.
Axtell, M. J., J. O. Westholm and E. C. Lai, 2011 Vive la difference: biogenesis and
evolution of microRNAs in plants and animals. Genome Biol 12: 221.
Bartel, D. P., 2004 MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell 116: 281-297.
Bartel, D. P., 2009 MicroRNAs: target recognition and regulatory functions. Cell
136: 215-233.
Baskerville, S., and D. P. Bartel, 2005 Microarray profiling of microRNAs reveals
frequent coexpression with neighboring miRNAs and host genes. RNA 11:
241-247.
Boehm, M., and F. J. Slack, 2006 MicroRNA control of lifespan and metabolism.
Cell Cycle 5: 837-840.
Cesana, M., D. Cacchiarelli, I. Legnini, T. Santini, O. Sthandier et al., 2011 A long
noncoding RNA controls muscle differentiation by functioning as a
competing endogenous RNA. Cell 147: 358-369.
Chen, Y. W., S. Song, R. Weng, P. Verma, J. M. Kugler et al., 2014 Systematic
study of Drosophila microRNA functions using a collection of targeted
knockout mutations. Dev Cell 31: 784-800.
Chen, Y. W., R. Weng and S. M. Cohen, 2011 Protocols for use of homologous
recombination gene targeting to produce microRNA mutants in Drosophila.
Methods Mol Biol 732: 99-120.
Denzler, R., V. Agarwal, J. Stefano, D. P. Bartel and M. Stoffel, 2014 Assessing the
ceRNA hypothesis with quantitative measurements of miRNA and target
abundance. Mol Cell 54: 766-776.
Enright, A. J., B. John, U. Gaul, T. Tuschl, C. Sander et al., 2003 MicroRNA targets
in Drosophila. Genome Biol 5: R1.
Finkel, T., 2015 The metabolic regulation of aging. Nat Med 21: 1416-1423.
Friedman, R. C., K. K. Farh, C. B. Burge and D. P. Bartel, 2009 Most mammalian
mRNAs are conserved targets of microRNAs. Genome Res 19: 92-105.
Gendron, C. M., and S. D. Pletcher, 2017 MicroRNAs mir-184 and let-7 alter
Drosophila metabolism and longevity. Aging Cell 16: 1434-1438.
Ghildiyal, M., and P. D. Zamore, 2009 Small silencing RNAs: an expanding
universe. Nat Rev Genet 10: 94-108.
20
Griffiths-Jones, S., J. H. Hui, A. Marco and M. Ronshaugen, 2011 MicroRNA
evolution by arm switching. EMBO Rep 12: 172-177.
Grimson, A., M. Srivastava, B. Fahey, B. J. Woodcroft, H. R. Chiang et al., 2008
Early origins and evolution of microRNAs and Piwi-interacting RNAs in
animals. Nature 455: 1193-1197.
Grishok, A., A. E. Pasquinelli, D. Conte, N. Li, S. Parrish et al., 2001 Genes and
mechanisms related to RNA interference regulate expression of the small
temporal RNAs that control C. elegans developmental timing. 106: 23-34.
Hansen, T. B., T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen et al., 2013
Natural RNA circles function as efficient microRNA sponges. Nature 495:
384-388.
Hertel, J., M. Lindemeyer, K. Missal, C. Fried, A. Tanzer et al., 2006 The expansion
of the metazoan microRNA repertoire. BMC Genomics 7: 25.
Hornstein, E., and N. Shomron, 2006 Canalization of development by microRNAs.
Nat Genet 38 Suppl: S20-24.
Inukai, S., and F. Slack, 2013 MicroRNAs and the genetic network in aging. J Mol
Biol 425: 3601-3608.
John, B., A. J. Enright, A. Aravin, T. Tuschl, C. Sander et al., 2004 Human
MicroRNA targets. PLoS Biol 2: e363.
Karreth, F. A., Y. Tay, D. Perna, U. Ala, S. M. Tan et al., 2011 In vivo identification
of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse
model of melanoma. Cell 147: 382-395.
Kim, V. N., and J. W. Nam, 2006 Genomics of microRNA. Trends Genet 22: 165-
173.
Kloosterman, W. P., and R. H. Plasterk, 2006 The diverse functions of microRNAs
in animal development and disease. Dev Cell 11: 441-450.
Kondo, S., and R. Ueda, 2013 Highly improved gene targeting by germline-specific
Cas9 expression in Drosophila. Genetics 195: 715-721.
Kozomara, A., and S. Griffiths-Jones, 2011 miRBase: integrating microRNA
annotation and deep-sequencing data. Nucleic Acids Res 39: D152-157.
Kozomara, A., and S. Griffiths-Jones, 2013 miRBase: annotating high confidence
microRNAs using deep sequencing data. Nucleic Acids Research 42: D68-
D73.
Lagos-Quintana, M., R. Rauhut, W. Lendeckel and T. Tuschl, 2001 Identification of
novel genes coding for small expressed RNAs. Science 294: 853-858.
Lau, N. C., L. P. Lim, E. G. Weinstein and D. P. Bartel, 2001 An abundant class of
tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science
294: 858-862.
Lee, R. C., R. L. Feinbaum and V. J. c. Ambros, 1993 The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. 75:
843-854.
Lee, Y., K. Jeon, J. T. Lee, S. Kim and V. N. Kim, 2002 MicroRNA maturation:
stepwise processing and subcellular localization. EMBO J 21: 4663-4670.
Lee, Y., M. Kim, J. Han, K. H. Yeom, S. Lee et al., 2004 MicroRNA genes are
transcribed by RNA polymerase II. EMBO J 23: 4051-4060.
Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel and C. B. Burge, 2003
Prediction of mammalian microRNA targets. Cell 115: 787-798.
21
Marco, A., A. Kozomara, J. H. Hui, A. M. Emery, D. Rollinson et al., 2013a Sexbiased
expression of microRNAs in Schistosoma mansoni. PLoS Negl Trop
Dis 7: e2402.
Marco, A., M. Ninova, M. Ronshaugen and S. Griffiths-Jones, 2013b Clusters of
microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids
Res 41: 7745-7752.
Memczak, S., M. Jens, A. Elefsinioti, F. Torti, J. Krueger et al., 2013 Circular RNAs
are a large class of animal RNAs with regulatory potency. Nature 495: 333-
338.
Nguyen, T. A., M. H. Jo, Y.-G. Choi, J. Park, S. C. Kwon et al., 2015 Functional
anatomy of the human microprocessor. 161: 1374-1387.
Pasquinelli, A. E., B. J. Reinhart, F. Slack, M. Q. Martindale, M. I. Kuroda et al.,
2000 Conservation of the sequence and temporal expression of let-7
heterochronic regulatory RNA. Nature 408: 86-89.
Peng, D. X., M. Luo, L. W. Qiu, Y. L. He and X. F. Wang, 2012 Prognostic
implications of microRNA-100 and its functional roles in human epithelial
ovarian cancer. Oncol Rep 27: 1238-1244.
Rajewsky, N., 2006 microRNA target predictions in animals. Nat Genet 38 Suppl:
S8-13.
Ryan, B., G. Joilin and J. M. Williams, 2015 Plasticity-related microRNA and their
potential contribution to the maintenance of long-term potentiation. Front
Mol Neurosci 8: 4.
Ryazansky, S. S., V. A. Gvozdev and E. Berezikov, 2011 Evidence for posttranscriptional
regulation of clustered microRNAs in Drosophila. BMC
Genomics 12: 371.
Saini, H. K., A. J. Enright and S. Griffiths-Jones, 2008 Annotation of mammalian
primary microRNAs. BMC Genomics 9: 564.
Saini, H. K., S. Griffiths-Jones and A. J. Enright, 2007 Genomic analysis of human
microRNA transcripts. Proc Natl Acad Sci U S A 104: 17719-17724.
Southall, T. D., D. A. Elliott and A. H. Brand, 2008 The GAL4 System: A Versatile
Toolkit for Gene Expression in Drosophila. CSH Protoc 2008: pdb top49.
Tay, Y., L. Kats, L. Salmena, D. Weiss, S. M. Tan et al., 2011 Coding-independent
regulation of the tumor suppressor PTEN by competing endogenous mRNAs.
Cell 147: 344-357.
Tay, Y., J. Rinn and P. P. Pandolfi, 2014 The multilayered complexity of ceRNA
crosstalk and competition. Nature 505: 344-352.
Wang, Z., and F. Zhu, 2017 MicroRNA-100 is involved in shrimp immune response
to white spot syndrome virus (WSSV) and Vibrio alginolyticus infection. Sci
Rep 7: 42334.
Wheeler, B. M., A. M. Heimberg, V. N. Moy, E. A. Sperling, T. W. Holstein et al.,
2009 The deep evolution of metazoan microRNAs. Evol Dev 11: 50-68.
Xiao, A., Z. Wang, Y. Hu, Y. Wu, Z. Luo et al., 2013 Chromosomal deletions and
inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic
Acids Res 41: e141.
Yeh, S. D., M. von Grotthuss, K. A. Gandasetiawan, S. Jayasekera, X. Q. Xia et al.,
2014 Functional divergence of the miRNA transcriptome at the onset of
Drosophila metamorphosis. Mol Biol Evol 31: 2557-2572.
22
Yi, R., Y. Qin, I. G. Macara, B. R. J. G. Cullen and development, 2003 Exportin-5
mediates the nuclear export of pre-microRNAs and short hairpin RNAs. 17:
3011-3016.