| 研究生: |
邱繼德 Chi-Te Chiou |
|---|---|
| 論文名稱: |
運動物件追蹤硬體加速器設計與實作 Design and Implementation of Hardware Accelerator for Motion Object Tracking |
| 指導教授: |
陳慶瀚
Ching-Han Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 硬體加速器 、物件追蹤 、設計與實作 |
| 外文關鍵詞: | Hardware Accelerator, Object Tracking, Design and Implementation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在視訊監控和機器人視覺應用,物件追蹤扮演了重要的角色。典型的物件追蹤演算法需要大量計算資源,導致在資源受限的嵌入式系統實現即時物件追蹤的困難。本論文致力於設計一個平行化架構的物件追蹤硬體加速器。此系統包含了特徵擷取模組、預估位置模組及PSO追蹤模組,以及最上層的管線控制器。特徵擷取模組利用灰度統計和哈爾特徵建立多特徵聯合稀疏矩陣,作為追蹤物的樣板資訊,接著預估搜尋範圍,最後粒子群最佳化追蹤物件移動。我們採用開放資料庫進行驗證和測試。實驗結果顯示,我們的系統能夠滿足即時追蹤的性能需求。同時與先前的研究結果比較,本系統減少了34%的硬體資源使用。
Object tracking has been a popular application in computer vision, for example,public area surveillance, and robot vision, etc. Due to typical object tracking algorithm needs high-efficiency hardware resources to reduce the processing time, it is difficult to implement a real-time object tracking in resource-constrained embedded systems. In this paper, we design a parallel architecture object tracking hardware accelerators. The architecture of the accelerator contains Feature module, Prediction module, PSO tracking module and a top layer pipeline controller. Feature module constructs multi-feature joint sparse matrix by using grayscale statistics and Haar-like features, and uses them as the template of the tracking object. Then, estimates the searching scale. Finally, Particle Swarm Optimization (PSO) is used for tracking object’s movement. We adopt open source database to verify and test our modules. Experimental result shows that our system can satisfy real-time object tracking requirement. Comparing with previous research consequence, our system reduces 34% usage of hardware resource.
[1]I. Ahmad, Z. He, M. Liao, F. Pereira, and M. T. Sun, “Special Issue on Video Surveillance,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 8, pp. 1001-1005, August 2008.
[2] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, “A System for Video Surveillance and Monitoring,” Technical Report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, 2000.
[3] A. Yilmaz, O. Javed and M. Shah, “Object Tracking: A Survey,” ACM Computing Surveys, vol. 38, no. 13, pp. 1-45, 2006.
[4] R. T. Collins, “Mean-shift Blob Tracking through Scale Space” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 234-240, 2003.
[5] Z. Li, Q. L. Tang and N. Sang, “Improved mean shift algorithm for occlusion pedestrian tracking,” Electronics Letters, vol. 44, pp. 622-623, 2008.
[6] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564-575, 2003.
[7] S. Birchfield and S. Rangarajan, “Spatiograms versus histograms for region-based tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, vol. 2, pp. 1158-1163, 20-25 June 2005.
[8] D. Roller, K. Daniilidis and H. Nagel, “Model-based object tracking in monocular image sequences of road traffic scenes,” International Journal of Computer Vision, vol. 10, no. 3, pp. 257-281, 1993.
[9] Q. Delamarre and O. Faugeras, “3D Articulated Models and Multi-View Tracking with Silhouettes,” Proceedings of the IEEE Seventh International Conference on Computer Vision, Kerkyra, vol. 2, pp. 716-721, 20-27 September 1999.
[10] P. KaewTraKulPong and R. Bowden, “An Adaptive Visual System for Tracking Low Resolution Color Targets,” Proceedings of the British Machine Vision Conference, Manchester, UK, pp. 243-252, 10-13 September 2001.
[11] J. Sturges and T. W. A. Whitfield, “Locating basic colours in the Munsell space,” Color Research and Application, vol. 20, no. 6, pp. 364-376, December 1995.
[12] R. Bourezak and G. Bilodeau, “Object detection and tracking using iterative division and correlograms,” Proceedings of the 3rd Canadian Conference of Computer and Robot Vision, Quebec, Canada, pp. 38, 07-09 June 2006.
[13] F. Chang, L. Ma and Y. Qiao, “Target Tracking Under Occlusion by Combining Integral-Intensity-Matching with Multi-block-voting,” Proceedings of the 2005 international conference on Advances in Intelligent Computing, Hefei, China, vol. 3644, pp. 77-86, 23-26 August 2005.
[14] K. Nummiaro, E. Koller-meier and L. V. Gool, “An Adaptive Color-Based Particle Filter,” Image And Vision Computing, vol. 21, no. 1, pp. 99-110, 10 January 2003.
[15] P. F. Cheng, W. H. Wang and C.Y. Lin, “Adaptive Object Detection and Tracking,” ICL Technical Journal, vol. 20, pp. 78-84, 2007.
[16] W. Hu, W. Li and X. Zhang, “Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 4, pp. 816-833, 04 September 2013.
[17] Q. Wang, F. Chen, W. Xu and M. H. Yang, “Online discriminative object tracking with local sparse representation,” Proceedings of the 2012 IEEE Workshop on Applications of Computer Vision, Breckenridge, CO, pp. 425-432, 9-11 January 2012.
[18] S. Zhang, H. Yao, S. Liu, “Robust visual tracking using feature-based visual attention,” Proceedings of the 2010 IEEE International Conference on Acoustics Speech and Signal Processing, Dallas, TX, pp. 1150-1153, 14-19 March 2010.
[19] X. Jia, H. Lu, M. H. Yang, “Visual tracking via adaptive structural local sparse appearance model,” Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, pp. 1822-1829, 16-21 June 2012.
[20] P. Dickinson, K. Appiah, A. Hunter and S. Ormston. “An FPGA-Based Infant Monitoring System,” Proceedings of the IEEE International Conference on Field-Programmable Technology, Singapore, pp. 315-316, 11-14 December 2005.
[21] R. Cucchiara, P. Onfiani, A. Prati and N. Scarabottolo, “Segmentation of Moving Objects at Frame Rate: A Dedicated Hardware Solution,” Proceedings of the IEEE Seventh International Conference on Image Processing And Its Applications, Manchester, vol. 1, pp. 138-142, July 1999.
[22] R. Aguilar-Ponce, J. Tessier, C. Emmela, A. Baker, J. Das,J.L.Tecpanecatl-Xihuitl, A. Kumar and M. Bayoumi, “Real-time VLSI Architecture for Detection of Moving Object Using Wronskian Determinant,” Proceedings of the IEEE 48th Midwest Symposium on Circuits and Systems, Covington, KY, vol. 1, pp. 875-878, 7-10 August 2005.
[23] Q. GU, T. Takaki and I. Ishii, “Fast FPGA-Based Multiobject Feature Extraction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 1, pp. 30-45, 01 June 2012.
[24] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, vol. 1, pp. 511-518, 8-14 December 2001.
[25] A. Mohan, C. Papageorgiou, T. Poggio, “Example-based object detection in images by components, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 349-361, April 2001.
[26] P. Maybeck, “Stochastic Models, Estimation, and Control,” Academic Press, Inc, vol. 1, 1979.
[27] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, vol. 4, pp. 1942-1948, 27 November-1 December 1995.
[28] C. H. Chen, T. K. Yao, J. H. Dai, and C. Y. Chen, “RETRACTED: A pipelined ultiprocessor system-on-a-chip (SoC) design methodology for streaming signal processing”, Journal of Vibration and Control, vol. 20, no. 2, pp. 163-178, 2014.
[29] [Online.] IEC website, " International Electrotechnical Commission," "http://www.iec.ch"
[30] Altera, BeMicro Max 10 User Manual
[31] STMicroelectronics, STM32F429 User Manual
[32] Y. Wang, P.M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar, “CDnet 2014: An Expanded Change Detection Benchmark Dataset” IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.393-400, 23-28 June 2014