| 研究生: |
黃文彥 Wen-Yen Huang |
|---|---|
| 論文名稱: |
應用ABAQUS顯性求解器於機械元件之強度及破壞分析:以筆電樞紐為例 Application of ABAQUS explicit solver for strength and fracture analysis of mechanical components: A case study on laptop hinges |
| 指導教授: |
鍾禎元
Chen-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 顯性積分法 、擬靜態模擬 、延性破壞 、破壞應變能 |
| 外文關鍵詞: | Explicit method, Quasic-static, Ductile damage, Fracture energy |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用有限元素軟體的顯性積分法(Explicit)進行擬靜態模擬(Quasi-static Simulation),評估材料的延性破壞及樞紐組件的最大扭矩以便減少樞紐組件的設計時間及模具試模成本。模擬內的材料延性破壞設定以17-4PH金屬粉末射出成型試棒進行單軸拉伸實驗獲取材料資訊,並以有限元素軟體ABAQUS作材料轉換及拉伸模擬,實驗與模擬結果顯示應力應變曲線相符,其最大應力誤差率介於0.01%至0.13%,塑性斷裂應變誤差率介於0.05%至1.56%,證明材料延性破壞設定的準確性。樞紐扭矩實驗中的心軸使用10B21材料,承架使用SK7T1,兩支材料分別進行單軸拉伸試驗並於軟體內作材料轉換及延性破壞設定,並設定扭矩破壞模擬。從兩者的模擬與實驗結果得知,心軸實驗與模擬結果最大扭矩值誤差率為10%,模擬斷裂位置與實驗相符;承架實驗與模擬結果最大扭矩值誤差率2.5%,並由軟體內觀察到實驗斷裂位置有明顯拉伸應力集中與實際斷裂位置相符。由實驗與模擬結果的相互印證可說明使用顯性積分法進行擬靜態破壞模擬可以幫助預測樞紐的受力行為及最大扭矩值以便縮短樞紐組件設計時間,並避免隱式求解器因高度非線性而迭代不收斂之問題。
This study applies explicit method in finite element software for quasi-static simulations to assess the ductile fracture of materials and the maximum torque of hinge components, aiming to reduce the design time and mold trial costs of hinge components. The ductile fracture settings for materials in the simulation are based on uniaxial tensile experiments conducted on 17-4PH metal powder injection molded specimens to obtain material information. Transformation of material stress strain curve from engineering to true one and tensile simulations are performed using the ABAQUS finite element software. The simulation result of stress-strain curves are highly consistent to experimental ones with a maximum stress error rate ranging from 0.01% to 0.13% and a plastic fracture strain error rate ranging from 0.05% to 1.56%, confirming the correctness of the ductile fracture settings for the material.
In the hinge torque experiments, the core shaft is made of 10B21 material, and the hinge support frame is made of SK7T1 material. Both materials undergo uniaxial tensile tests, and material curve transformation and ductile fracture settings are performed within the software, along with torque simulations. From the comparison of the simulation and experimental results, it is found that the maximum torque values have an error rate of 10% for the core shaft, with the fracture location in simulation matching the experimental results. For the hinge support frame, the maximum torque value has an error rate of 2.5%, and it is observed in the software that there is significant concentration of tensile stress at the actual fracture location.
The consistency between the experimental and simulation results demonstrates that using the explicit method for quasi-static fracture simulation can help predict the behavior of objects under loading and maximum torque value of hinges. This method can help reduce hinge design time while avoiding convergence issues associated with implicit methods due to high nonlinearity.
[1]F. J. Harewood, and P. E. McHugh, “Comparison of the implicit and explicit finite element methods using crystal plasticity,” Computational Material Science, vol. 39, no. 2, pp. 481-494, 2007.
[2]W. J. Chung, J. W. Cho, and T. Belytschoko, “On the dynamic effects of explicit FEM in sheet metal forming analysis ,” Engineering Computations, vol. 15, no. 6, pp. 750-776, 1998.
[3]Dassault Systèmes, Abaqus/Explicit: Advanced Topics, 2018.
[4]A. Hillerborg, M. Modéer, and P. E. Petersson, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cement and Concrete Research, vol. 6, no. 6, pp. 773-781, 1976.
[5]A. Hillerborg, “The theoretical basis of a method to determine the fracture energy "G" _"F" of concrete,” Materials and Structures, vol. 18, pp. 291-296, 1985.
[6]Y. Bao, and T. Wierzbicki, “On fracture locus in the equivalent strain and stress triaxiality space,” International Journal of Mechanical Sciences, vol. 46, no. 1, pp. 81–98, 2004.
[7]Y. Bai, and T. Wierzbicki, “A new model of metal plasticity and fracture with pressure and Lode dependence,” International Journal of Plasticity, vol. 24, no. 6, pp. 1071-1096, 2008.
[8]Dassault Systèmes, Abaqus Analysis User’s Guide, Damage evolution and element removal for ductile metals, 2021.
[9]Torque wrench 230DB3, Tohnichi MFG. CO., LTD.
[10]Autograph universal testing machine AG-I 250kN, Shimadzu corporation.
[11]Allrounder 320C golden edition, Arburg GmbH & CO. KG., Germany, 2023.
[12]W. Chen, and A.F. Saleeb, Constitutive Equations for Engineering Materials, vol. 1: Elasticity and Modeling, Revised edition, Amsterdam: Elsevier Science B. V., pp. 580, 1994.
[13]ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materails, 2016.
[14]F. Pelzoldt, and M. Mulser, Standards for Metal Injection Moulding: Progress to-date and future challenges, PIM International, vol. 11, No. 1, pp. 59-66, 2017.
[15]林鴻榮、鄭國華,「中碳鋼加硼效應研究」,經濟部七十年度研究發展專題,1981年。