跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭歆儒
Hsin-Ju Hsiao
論文名稱: 無線機會網路下基於時間週期性之訊息傳送機制
On Exploiting Temporal Periodicity for Message Delivery in Wireless Opportunistic Networks
指導教授: 胡誌麟
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 68
中文關鍵詞: 無線機會網路週期
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線機會網路下,網絡中的節點具有移動性並且透過無線感應來傳輸訊息,因此節點與節點之間並不存在一條始終保持連線的通道,進而形成破碎的網路拓樸。然而在這類的耐延遲網路中已有許多相關研究,其特殊的傳遞訊息方式— store-carry-and-forward,藉由節點機會性的相遇方式來傳遞訊息,因此對傳輸效能有極大的限制與影響。為了改善現有方法的傳輸效能,在這篇論文中,我們提出一個新的路由策略— 基於時間週期性之訊息傳送機制(TPMD)。TPMD 是一個基於週期特性所設計之路由策略,主要著重在節點的移動週期之紀錄、與過去不同的週期定義以及量化週期特性。後續的模擬中證明了TPMD 對於傳送效能有顯著的改善,即使是在條件較差的網路環境:節點的暫存空間小、訊息存活時間長。


    Wireless opportunistic networks represent mobile wireless networks that are generally characterized by broken topology, no end-to-end paths from a source to a destination. Although routing algorithms in this kind of Delay-tolerant networks (DTNs) are being increasingly designed, the network performance associated with store-carryand-forward is still limited because of opportunistic contacts. In this thesis, we propose a routing scheme in DTNs, named Temporal Periodicity for Message Delivery method (TPMD), for achieving greater performance than exist routing protocols. TPMD is a periodic routing, which focus on the characteristic of periodicity about movement, adjustment of common period definition and period quantification procedure, as a result of significance of temporal periodicity in DTNs. Finally, substantial simulations show that the TPMD can effectively improve network performance under a constrained environment with limited buffer size and prolonged TTL of messages in a network.

    1 Introduction 1 2 Related Work 3 2.1 Non-history-based Schemes . . . . . . . . . . . . . 3 2.2 History-based Schemes . . . . . . . . . . . . . . . 4 2.3 Period-based Schemes . . . . . . .. . . . . . . . . 6 3 Temporal Periodicity for Message Delivery Method(TPMD)7 3.1 Motivation . . . . . . . . . . . . . . . . . . . . 7 3.2 System Model . . . . . . . . . . . . . . . . . . . 8 3.3 Temporal Periodicity for Message Delivery . . . . . 9 3.3.1 Period Series . . . . . . . . . . . . . . . . . . 9 3.3.2 Similarity of Periodicity . . . . . . . . . . . 10 3.3.3 Message Transmitting Based on Periodicity . . . 11 4 Simulations 15 4.1 Simulator . . . . . . . . . . . . . . . . . . . . 15 4.2 Performance Metrics . . . . . . . . . . . . . . . 15 4.3 Mobility Model . . . . . . . . . . . . . . . . . 16 4.3.1 RandomWay Point . . . . . . . . . . . . . . . . 17 4.3.2 TVCM . . . . . . . . . . . . . . . . . . . . . . 17 4.3.3 Infocom06 . . . . . . . . . . . . . . . . . . . 18 4.3.4 NCU Trace . . . . . . . . . . . . . . . . . . . 18 4.4 Comparison Method . . . . . . . . . . . . . . . . 18 4.5 Environment Setting . . . . . . . . . . . . . . . 19 4.5.1 Parameters used in TPMD . . . . . . . . . . . . 19 4.5.2 Parameters used in Different Mobility Patterns . 21 5 Results and Analysis with Different Factors 22 5.1 Results with Different Values of TTL . . . . . . . 22 5.2 Results with Different Values of Buffer Size . . . 23 5.3 Conclusion of Different Variables in Environment . 23 5.4 Results with Different Message Generation Times . 25 5.5 Results with Different Time Units . . . . . . . . 26 6 Results and Analysis of Periodicity 42 6.1 Prior Periodicity Analysis . . . . . . . . . . . . 42 6.2 Analysis under Different Mobility Periodicity Patterns . . . . . . . . . . 43 6.3 Results with Different Values of . . . . . . . . . 43 7 Conclusions and Future Works 50 Bibliography 51

    [1] A. G. and Voyiatzis, “A Survey of Delay- and Disruption-Tolerant Networking Applications,” Internet Engineering, vol. 5, no. 1, June 2012.
    [2] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic Routing in Intermittently Connected Networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 7, no. 3, pp.19–20, Jul. 2003.
    [3] K. Thilakarathna, A. C. Viana, A. Seneviratne, and H. Petander, “Mobile Social
    Networking Through Friend-to- friend Opportunistic Content Dissemination,” in Proceedings of the Fourteenth ACM International Symposium on Mobile Ad Hoc Networking
    and Computing, ser. MobiHoc ’13. Bangalore, India: ACM, 2013, pp.263–266.
    [4] P. Pholpabu and L.-L. Yang, “A mutual-community-aware routing protocol for mobile social networks,” in Proceeding of IEEE Global Communications Conference, Dec 2014, pp. 2917–2922.
    [5] Q. Yuan, I. Cardei, and J. Wu, “Predict and Relay: An Efficient Routing in Disruption-tolerant Networks,” in Proceedings of the Tenth ACM International Symposium
    on Mobile Ad Hoc Networking and Computing, ser. MobiHoc ’09. New Orleans, LA, USA: ACM, 2009, pp. 95–104.
    [6] C. Liu and J. Wu, “Practical Routing in a Cyclic MobiSpace,” Proceeding of IEEE/ACM Transactions on Networking, vol. 19, no. 2, pp. 369–382, Apr 2011.
    [7] E. Bulut and B. K. Szymanski, “Exploiting Friendship Relations for Efficient Routing in Mobile Social Networks,” Proceeding of IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 12, pp. 2254–2265, Dec 2012.
    [8] A. Vahdat and D. Becker, “Epidemic Routing for Partially Connected Ad Hoc Networks,” Tech. Rep., 2000.
    [9] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray andWait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks,” in Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking, ser. WDTN ’05. Philadelphia, Pennsylvania, USA: ACM, 2005, pp. 252–259.
    [10] G. K. W. Wong and X. Jia, “A novel socially-aware opportunistic routing algorithm in mobile social networks,” in 2013 International Conference on Computing,
    Networking and Communications (ICNC), January 2013, pp. 514–518.
    [11] J. Leguay, T. Friedman, and V. Conan, “Evaluating Mobility Pattern Space Routing for DTNs,” in Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, April 2006, pp. 1–10.
    [12] K. Wei, S. Guo, D. Zeng, K. Xu, and K. Li, “Exploiting Small World Properties for Message Forwarding in Delay Tolerant Networks,” Proceeding of IEEE Transactions on Computers, vol. 64, no. 10, pp. 2809–2818, Oct 2015.
    [13] E. Bulut, S. C. Geyik, and B. K. Szymanski, “Efficient routing in delay tolerant networks with correlated node mobility,” in The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), Nov 2010, pp. 79–88.
    [14] Z.Wang, M. A. Nascimento, and M. H. MacGregor, “Towards End-to-end Routing for Periodic Mobile Objects,” in Proceedings of the First ACM International Symposium
    on Design and Analysis of Intelligent Vehicular Networks and Applications, ser. DIVANet ’11. Miami, Florida, USA: ACM, 2011, pp. 61–68.

    [15] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang, “Study of a Busbased Disruption-tolerant Network: Mobility Modeling and Impact on Routing,” in Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, ser. MobiCom ’07. ACM, 2007, pp. 195–206.
    [16] Z. Wang, M. A. Nascimento, and M. H. MacGregor, “Discovering periodic patterns of nodal encounters in mobile networks ,” Pervasive and Mobile Computing, vol. 9, no. 6, pp. 892 – 912, 2013.
    [17] J. Leguay, T. Friedman, and V. Conan, “DTN Routing in a Mobility Pattern Space,” in Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking, ser. WDTN ’05. Philadelphia, Pennsylvania, USA: ACM, 2005, pp. 276–283.
    [18] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN Protocol Evaluation,” in Proceedings of the 2nd International Conference on Simulation Tools and Techniques, ser. Simutools ’09. Rome, Italy: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009, pp. 55:1–55:10.
    [19] Wei-JenHsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling Spatial and Temporal Dependencies of User Mobility in Wireless Mobile Networks,” IEEE/ACM Transactions on Networking (TON), vol. 17, no. 5, pp. 1564–1577, Oct. 2009.
    [20] P. Hui and J. Crowcroft, “How Small Labels Create Big Improvements,” in Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2007. PerCom Workshops ’07., March 2007, pp. 65–70.

    QR CODE
    :::