| 研究生: |
高嘉謙 Jia-cian Gao |
|---|---|
| 論文名稱: |
單站地動預估式建立及場址特定地震危害度分析 Single-station Ground Motion Prediction Equation and Site-specific Seismic Hazard Analysis |
| 指導教授: |
李錫堤
Chyi-Tyi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 單站地動預估式 、強地動衰減式 、場址特定地震危害度分析 、場址特性地動預估式 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地震頻繁,重要工程如核電廠及大型水庫,會進行個案的地震評估,擬定設計地震參數,此技術稱為地震危害度分析(seismic hazard analyses)。分析過程須評估震源規模、震源距離及工址震度大小,其中震源釋放地震波隨距離傳遞至工址之震度預測關係式或稱地動預估式(ground motion prediction equation,GMPE)研究尤為重要。過去的危害度分析所使用的地動預估式是以全區域內多個測站記錄到多個不同震源的強地動紀錄所建立的,包含過多的地動值變異性,會造成危害度過估。
本研究在地震資料上選用單一場址來進行分析,建立更適合該場址的地動預估式,以合理地計算危害度。研究過程中先選用來自中央氣象局的自由場強地動觀測網計畫(TSMIP)豐富之強震資料,共30602筆紀錄,完成台灣地區地殼地震全區地動預估式,再分別進行9個不同單站的地動預估式分析。分析結果顯示單一測站標準差比全區標準差(0.626)下降9%至33%,並以單站地動預估式建立場址特定地震危害度分析,以再現期2475年為例,顯示以單站地動預估式分析危害度比全區結果下降11%至48%。若地動預估式再進一步引入震源分區,單站標準差相較全區下降16%至36%,危害度結果較使用全區地動預估式可望下降更多。
Due to frequent earthquakes in Taiwan, Probabilistic seismic hazard analysis (PSHA) is a common approach to evaluate potential earthquake motions at sites of critical facilities such a nuclear power plant and dams. It includes the estimation of the earthquake magnitude and distance of source, and earthquake intensity at a site. Ground motion prediction equation (GMPE) reflects the fact that the amplitude of the ground-motion increases with earthquake magnitude and decreases with propagation distance. Modern GMPEs are based on datasets of ground-motion parameters recorded at multiple stations and different earthquakes in various source regions. It causes excessive variability and leads to increase seismic hazard estimates.
In the present study, only strong-motion data record at a site is selected to establish a GMPE. We processed strong-motion data from TSMIP in Taiwan which used these data to establish GMPEs. A total of 30602 records are selected and are used to accomplish the regression analysis of a regional GMPE in the first step. Then, 9 stations are selected to complele a single-station GMPE, respectively. The results reveal that the sigma of the regional GMPE is 0.626 in ln unit and the sigma of single-station GMPE is ranging 0.416 to 0.567. The single-station sigma is about 9% to 33% reduction from the regional one. When PSHA is performed by adopting the single-station sigma, the hazard is 11% to 48% smaller then that regional sigma is used. If source zones are further involved in GMPEs, the sigma of single-station GMPEs can reduced 16% to 36% relative to regional GMPE's. It is expected to further reduce the result of seismic hazard analysis.
Anagnos, T., and Kiremidjian, A. S. (1988) A review of earthquake occurrence models for seismic hazard analysis: Probabilistic Engineering Mechanics, 3, p. 3-11.
Abrahamson, N. A., and Youngs, R. R. (1992) A stable algorithm for regression analyses using the random effects model: Bull. Seism. Soc. Am., 82, p. 505–510.
Ambraseys, N. N., and Bommer, J. J. (1995) Attenuation relations for use in Europe: Proceedings of Fifth SECED Conference on European Seismic Design Practice, p. 67–74.
Anderson, J. G., Lee, Y., Zeng, Y., and Day, S. (1996) Control of strong motion by the upper 30 meters: Bull. Seism. Soc. Am., 86, p. 1749–1759.
Anderson, J. G. (2000) Expected shape of regressions for ground-motion prameters on rock: Bull. Seism. Soc. Am., 90, p. 43-52.
Abrahamson, N. A., and Silva, W. J. (2007) Abrahamson & Silva NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters: PEER report, http://peer.berkeley.edu/products/rep_nga_models.html.
Abrahamson, N. A., and Silva, W. J. (2008) Summary of the Abrahamson & Silva NGA Ground-Motion Relations: Earthquake Spectra, 24, p. 67–98.
Al-Atik, L., Abrahamson, N. A., Cotton, F., Scherbaum, F., Bommer, J., and Kuehn, N. (2010) The variability of ground-motion prediction models and its components: Seismol. Res. Lett., 81, p. 794–801.
Anderson, J. G., and Brune, J. N. (1999) Probabilistic seismic hazard assessment without the ergodic assumption: Seism. Res. Let., 70, p. 19-28.
Atkinson, G. M. (2006) Single-station sigma: Bull. Seism. Soc. Am., 96, p. 446-455.
Boore, D. M., and Joyner, W. B. (1982) The empirical prediction ofground motion: Bull. Seism. Soc. Am., 72, p. 43–60.
Boore, D. M., Joyner, W. B., Fumal, T. E. (1993) Estimation of response spectra and peak accelerations from Western North American earthquakes: an interim report, U. S. Geological survey Open-File Report, p. 93–509.
Bommer, J. J., and Abrahamson, N. A. (2006) Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates?: Bull. Seismol. Soc. Am., 96, p. 1976–1977.
Boore, D. M., and Atkinson, G. M. (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s: Earthquake Spectra, 24, p. 99–13.
Boore, D. M., Joyner, W. B., and Fumal, T. E. (1997) Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work: Seism. Res. Lett., 68, p. 128–153.
Borcherdt, R. D. (1994a) Estimates of site-dependent response spectra for design (methodology and justification): Earthquake Spectra, 10, p. 617-653.
Borcherdt, R. D. (1994b) An integrated methodology for estimates of site-dependent response spectra, seismic coefficients for site dependent building code provisions, and predictive GIS maps of strong ground shaking, in Proceedings of Seminar on New Developments in Earthquake Ground Motion Estimation and Implications for Engineering Design Practice: Applied Technology Council ATC 35-1, p. 10-1~10-44.
Building Seismic Safety Council (BSSC) (1998) 1997 Edition NEHPR recommended provisions for seismic regulations for new buildings and other structures, FEMA 302/303, Part 1(Provisions) and Part 2(Commentary): developed for the Federal Emergency Management Agency, Washing, DC., p. 337.
Castro, R. R., Mucciarelli, M., Pacor, F., and Petrungaro, C. (1997) S-wave site-response estimates using horizontal-to-vertical spectral rations: Bull. Seism. Soc. Am., 87, p. 256–260.
Campbell, K. W. (1981) Near-source attenuation of peak horizontal acceleration: Bull. Seism. Soc. Am., 71, p. 2039-2070.
Campbell, K. W. (1997) Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra: Seism. Res. Lett., 68, p. 154–179.
Campbell, K. W. (2002a) A contemporary guide to strong-motion attenuation relations: In: W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger, Editors, International Handbook of Earthquake and Engineering Seismology, Academic Press, London.
Campbell, K. W. (2002b) Engineering models of strong ground motion: In: W.F. Chen and C. Scawthorn, Editors, Handbook of Earthquake Engineering, CRC Press, Boca Raton, FL, USA chap. 5.
Campbell, K. W. (2002c) Strong-motion attenuation relations: In: W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger, Editors, International Handbook of Earthquake and Engineering Seismology, Academic Press, London chap. 60.
Campbell, K. W., and Bozorgnia, Y. (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s: Earthquake Spectra, 24, p. 139–171.
Campbell, K. W., and Bozorgnia, Y. (2008) Campbell-Bozorgnia NGA empirical ground motion model for the average horizontal component of PGA, PGV, PGD and SA at selected spectral periods ranging from 0.01–10.0 seconds: PEER report, http://peer.berkeley.edu/products/rep_nga_models.html.
Chang, T. Y., Cotton, F., and Angelier, J. (2001) Seismic attenuation and peak ground acceleration in Taiwan: Bull. Seism. Soc. Am., 91, p. 1229-1246.
Chen, Y. H., and Tsai, C. P. (2002) A new method for estimation of the attenuation relationship with variance components: Bull. Seism. Soc. Am., 92, p. 1984–1991.
Chiou, S. J., and Youngs, R. R. (2006) PEER-NGA Empirical Ground Motion Model for the Average Horizontal Component of Peak Acceleration and Pseudo-Spectral Acceleration for Spectral Periods of 0.01 to 10 Seconds: PEER report, http://peer.berkeley.edu/products/rep_nga_models.html.
Chiou, S. J., and Youngs, R. R. (2008) An NGA model for the average horizontal component of peak ground motion and response spectra: Earthquake Spectra, 24, p. 172–215.
Cornell, C. A. (1968) Engineering seismic risk analysis: Bulletin of the Seismological Society of America, 58, p. 1583–1606.
Douglas, J. (2001) A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates (1969–2000): ESEE Report 01-1, Department of Civil and Environmental Engineering, Imperial College, London. Jan.
Douglas, J. (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates: Earth-Science Reviews, 61, p. 43-104.
EERI Committee on Seismic Risk (1989) The basics of seismic risk analysis: Earthquake Spectra, 5, p. 675-702.
Gao, J. C., and Lee, C. T. (2014) Considering both aleatory variability and epistemic variability in probabilistic seismic hazard analysis: 2014 AGU Fall Meeting, S31C-4444.
Hanks, T. C., and Kanamori, H. (1979) A moment magnitude scale: Journal of Geophysical Research, 84, p. 2348-2350.
Heaton, T., Tajima, F., and Mori, A. W. (1986) Estimating ground motions using recorded accelerograms: Surveys in Geophysics, 8, p. 25-83.
Idriss, I. M. (2008) An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes: Earthquake Spectra, 24, p. 216–242.
Joyner, W. B., and Fumal, T. E. (1985) Predictive mapping of earthquake ground motion in evaluating earthquake hazards in the Los Angeles region: An Earth-Science Perspective, J. E. Ziony (Editor) U. S. Geological survey professional paper, 1360, p. 203–220.
Joyner, W. B., and Boore, D. M. (1988) Measurement, characterization, and prediction of strong ground motion: In: Proceedings of Earthquake Engineering and Soil Dynamics II. Geotechnical Division, ASCE, p. 43–102.
Kiureghian, A. D., and Ang, H. S. (1977) A fault-rupture model for seismic risk analysis: Bull. Seism. Soc. Am., 67, p. 1173-1194.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., and Kuo, K. W. (2012) Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT: Engineering Geology, 129, p. 68-75.
Lee, C. T., and Tsai, B. R. (2008) Mapping Vs30 in Taiwan: Terr. Atmos. Ocean. Sci., 19, p. 671-682.
Lee, C. T., Cheng, C. T., Liao, C. W., and Tsai, Y. B. (2001) Site classifications of Taiwan free-field strong-motion stations: Bull. Seism. Soc. Am., 91, p. 1283-1297.
Lee, C. T., Lin, P. S., Hsieh, B. S., and Sung, C. H. (2012) Regional arias intensity attenuation relationship for Taiwan with considering Vs30: Bull. Seism. Soc. Am., 102, p. 129-142.
Lin, P. S., Chiou, B., Abrahamson, N. A., Walling, M., Lee, C. T., and Cheng, C. T. (2011a) Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models: Bull. Seism. Soc. Am., 101, p. 2281-2295.
Lin, P. S., Lee, C. T., Cheng, C. T., and Sung, C. H. (2011b) Response spectral attenuation relations for shallow crustal earthquakes in Taiwan: Engineering Geology, 121, p. 150-164.
Liu, K. S., and Tsai, Y. B. (2005) Attenuation relationships of peak ground acceleration and velocity for crustal earthquakes in Taiwan: Bull. Seism. Soc. Am., 95, p. 1045–1058.
Liu, K. S., Shin, T. C., and Tsai, Y. B. (1999) A free field strong motion network in Taiwan: TSMIP, TAO, 10, p. 377-396.
Loh, C. H., Hwang, C. S., and Jean, Y. W. (1998) Seismic demand based on damage control model-considering basin effect and source effect: Soil Dynamics and Earthquake Engineering, 17, p. 335-345.
Idriss, I. M. (1978) Characteristics of earthquake ground motions. Proceedings of the ASCE Geotechnical Engineering Division Speciality Conference: Earthquake Engineering and Soil Dynamics, vol. III, p. 1151–1265.
Milne, G. W., and Davenport, A. G. (1969) Distribution of risk in Canada: Seism. Soc. Am., 59, p. 729-754.
Mohraz, B. (1976) A study of earthquake response spectra for different geological conditions: Bull. Seism. Soc. Am. 66, p. 915-935.
McGuire, R. K., and Shedlock, K. M. (1981) Statistical Uncertainties in Seismic Hazard Evaluations in The United States: Bull. Seism. Soc. Am., 71, p. 1287-1308.
Morikawa, N., Kanno, T., Narita, A., Fujiwara, H., Okumura, T., Fukushima, Y., and Guerpinar, A. (2008) Strong motion uncertainty determined from observed records by desnse network in Japan: J. Seism., 12, p. 529–546.
National Research Council (1988) Probabilistic seismic hazard analysis: national academic press, Washington, D.C., p. 97.
Pacific Gas and Electric Company (PG&E) (1988) Diablo canyon power plant long term seismic program, Final Report unpublished document.
Pinheiro, J., Douglas, B., Saikat, D. R., Deepayan, S., and the R Core team (2011) nlme: linear and nonlinear mixed effects models: R package version 3, p. 1-90.
Rodriguez-Marek, A., Montalva, G. A., Cotton, F., and Bonilla, F. (2011) Analysis of single-station standard deviation using the KiK-net data: Bull. Seism. Soc. Am., 101, p. 1242-1258.
Rodriguez-Marek, A., Cotton, F., Abrahamson, N. A., Akkar, S., Atik, L. A., Edwards, B., Montalva, G. A., and Dawood, H. M. (2013) A model for single-station standard deviation using data from various tectonic regions: Bull. Seism. Soc. Am., 103, p. 3149-3163.
Seed, H. B., Ugas, C., and Lysmer, J. (1976) Site-dependent spectra for earthquake-resistant design: Bull. Seism. Soc. Am. 66, p. 221-243.
Sadigh, K., Chang, C. Y., Egan, J. A., Makdisi, F., and Youngs, R. R. (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data: Seism. Res. Lett., 68, p. 180–189.
Sung, C. H., Lee, C. T., and Gao, J. C. (2014) Single-path sigma and spatial correlation of gmpe residuals deduced from a huge dataset in Taiwan: 2014 AGU Fall Meeting, S31C-4406.
Tsai, C. C., Loh, C. H., and Yeh, Y. T. (1987) Analysis of earthquake risk in Taiwan based on seismotectonic zones: Memor. of Geol. Soc. of China, 9, p. 413-446.
Trifunac, M. D., and Brady, A. G. (1975) A study on the duration of strong earthquake ground motion: Bull. Seism. Soc. Am. 65, p. 581-626.
Trifunac, M. D., and Brady, A. G. (1976) Correlations of peak acceleration, velocity and displacement with earthquake magnitude, distance and site conditions: Earthquake Eng. Struct. Dyn., 4, p. 455-471.
Wu, Y. M., Shin, T. C., and Chang, C. H. (2001) Near real-time mapping of peak ground acceleration and peak ground velocity following a strong earthquake: Bull. Seism. Soc. Am., 91, p. 1218–1228.
Youngs, R. R., and Coppersmith, K. J. (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates: Bull. Seism. Soc. Am., 75, p. 939-964.
Yeh, Y. T., and Loh, C. H. (1989) Seismic hazard assessment in Taiwan: proceeding of the Japan-China (Taipei) joint seminar on national hazard mitigation., Kyoto, Japan, July 16-20, p. 77-86.
Youngs, R. R., Chiou, S. J, Silva, W. J., and Humphrey, J. R. (1997) Strong ground motion attenuation relationships for subduction zone earthquakes: Seism. Res. Lett. 68, p. 58-73.
王郁如、李雅渟、馬國鳳、吳元傑、潘震宇(2014)臺灣東北部外海正斷層地震之強地動衰減式建置,103年地質與地球物理學術研討會大會手冊,第290頁。
王郁如、詹忠翰、李雅渟、馬國鳳、徐澔德(2015)臺灣機率式地震危害度分析,104年地質與地球物理學術研討會大會手冊,第190頁。
李錫堤(1991)地震危害機率分析方法之檢討。工程地質技術應用研討會Ⅲ 論文集,第5-1~5-19頁。
李錫堤(1993)活斷層工程評估的新發展。地工技術雜誌,第44期,第5-18頁。
李錫堤、邱宏智、林柏伸、鄭錦桐(2007)強震資料庫建置與維護及使用者平臺開發。中興工程,第95期,第119-123頁。
李錫堤、馬國鳳、秦葆珩(1999)美濃水庫設計地震評估成果報告。台灣省政府水利處,第4-1~4-25頁。
林柏伸(2009)台灣地區地動預估式研究與路徑效應分析。國立中央大學地球物理研究所博士論文,共135頁。
茅聲燾(1978)地震之工程危害度研究及其應用。中國土木水利學刊,第五卷1期,第35-40頁。
倪顯德、邱宏智(1991)台灣地區強地動最大加速度值衰減之統計模型探討。 第三屆台灣地區地球物理研討會論文集,第95-105頁。
黃正耀(1995)台灣地區強地動特性及地震危害度參數之評估。國立中央大學地球物理學系碩士論文,共110頁。
劉坤松(1999)台灣地區強震地動衰減模式之研究。國立中央大學地球物理研究所博士論文,共87頁。
劉坤松、吳健富、吳坤瑞(1996)台灣東北部地區地動加速度衰減模式之初步研究。台灣地區強地動觀測計畫研討會,第63-72頁。
蔡璧嬬(2007)臺灣自由場強震站場址分類之進一步研究。國立中央大學應用地質研究所,共192頁。
鄭錦桐(1997)台灣地區地震危害度─分析使用新的震源分區。立中央大學地球物理研究所碩士論文,共131頁。
鄭錦桐(2002)台灣地區地震危害度的不確定性分析與參數拆解。立中央大學地球物理研究所博士論文,共248頁。
鄭錦桐、李錫堤、蔡義本(1998)利用地理資訊系統輔助地震危害度分析。地工技術雜誌,第69期,第41-50頁。
鄭錦桐、李錫堤、蔡義本(2000)考慮斷層活動性的地震危害度分析。第八屆台灣地區地球物理研討會暨八十九年度中國地球物理學會年會論文集,第649-653頁。
鄭錦桐、林柏伸、謝寶珊、李錫堤(2010)新一代地動預估式對工址地震危害度分析之影響。中興工程(109期),第31-40頁。
鮑福星(1992)地震危害度分析之不確定性研究。國立台灣大學土木工程研究所碩士論文,共101頁。
謝寶珊(2008)台灣地區愛氏震度地動預估式之研究。國立中央大學應用地質研究所,共94頁。
謝寶珊、林柏伸、鄭錦桐、李錫堤(2014)臺灣地區隱沒帶地震愛氏震度地動預估式之建立與應用。中興工程,第125期,第33-43頁。
顏銀桐、林柏伸、邵國士、鄭錦桐、吳元傑、李憲忠(2014)地震波模擬技術發展與應用。中興工程,第123期,第13-22頁。
羅俊雄、簡文郁(1993)台灣地區地震危害度分析—程式建立。中央氣象局計畫。