| 研究生: |
蕭暐昕 Wei-Hsin Hsiao |
|---|---|
| 論文名稱: |
全球航空產業碳排放權配置的探討 |
| 指導教授: | 陳惠國 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 納許均衡資料包絡分析法(Nash DEA) 、納許均衡隨機半無母數資料包絡法(Nash StoNED) 、非期望產出 、非完全競爭市場 、碳排放權配置(ACP) |
| 外文關鍵詞: | Nash equilibrium data envelopment analysis, Nash equilibrium stochastic semi-nonparametric envelopment of data, undesirable output, imperfectly competitive market, allocation of carbon permit |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對2018年20間航空公司為研究對象,透過納許均衡資料包絡分析法(Nash DEA)及納許均衡隨機半無母數資料包絡法(Nash StoNED)建構碳排放權配置(allocation of carbon permit, ACP)模型並與集中化資料包絡分析法(centralized DEA) Feng (2015)進行比較。結果顯示,納許均衡資料包絡分析法及納許均衡隨機半無母數資料包絡法有考慮到期望產出的內生價格,因此這兩種模型的碳排放配置量變動幅度較大,就長遠來看,政府方可達到所預定的總減碳目標,公司方可以確保在自身最大收益的情況下接受碳排放配置的結果。集中化資料包絡分析法則是碳排放配置量變動幅度較小,公司較容易配合政府政策,可視為短期政策來執行。
To conduct allocation of carbon permit model based on 20 airlines in 2018, the research apply Nash equilibrium data envelopment analysis and Nash equilibrium stochastic semi-nonparametric envelopment of data. And compare with the centralized data envelopment analysis Feng(2015).The results show that both Nash DEA and Nash StoNED ACP model consider the endogenous price, and lead to the quantity of ACP of these two model’s variance are larger than centralized DEA.DEA. Consequently, the allocation outcome by using Nash DEA and Nash StoNED can be seen as a long - term policy which can simultaneously make sure the optimal benefit itself and achieve the goal of carbon emitting set by government. On the contrary, centralized DEA can be seen as a short-term policy that the companies can execute easily due to the smaller variance.
[1] 陳惠國,2010年,研究方法–理論與實務,滄海書局。
[2] European Union. Allocation to aviation. Retrieved June 6, 2020, from https://ec.europa.eu/clima/policies/ets/allowances/aviation_en
[3] IEA. CO2 Emissions from Fuel Combustion. Retrieved from https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics on June 6, 2020,
[4] Afriat, S. N. (1972). Efficiency estimation of production functions. International Economic Review, 568-598.
[5] Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21-37.
[6] Chen, H. K., Lin, Y. H., & Lee, C. Y. (2020). Convex nonparametric least squares and stochastic semi-nonparametric frontier to estimate the shadow prices of PM2. 5 and NOx for Taiwan’s transportation modes. International Journal of Sustainable Transportation, 1-19.
[7] Cui, Q. (2019). Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a network weak disposability DEA. Energy, 180, 763-771.
[8] Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281.
[9] Feng, C., Chu, F., Ding, J., Bi, G., & Liang, L. (2015). Carbon emissions abatement (CEA) allocation and compensation schemes based on DEA. Omega, 53, 78-89.
[10] Førsund, F. R. (2018). Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance. Empirical Economics, 54(1), 67-99.
[11] Johnson, A. L., & Kuosmanen, T. (2015). An introduction to CNLS and StoNED methods for efficiency analysis: Economic insights and computational aspects. Benchmarking for Performance Evaluation, 117-186.
[12] Kuosmanen, T. (2006). Stochastic nonparametric envelopment of data: combining virtues of SFA and DEA in a unified framework. MTT Discussion Paper.
[13] Kuosmanen, T., & Podinovski, V. (2009). Weak disposability in nonparametric production analysis: reply to Färe and Grosskopf. American Journal of Agricultural Economics, 91(2), 539-545.
[14] Lee, C. Y. (2016). Nash-profit efficiency: A measure of changes in market structures. European Journal of Operational Research, 255(2), 659-663.
[15] Lee, C. Y. (2018). Mixed-strategy Nash equilibrium in data envelopment analysis. European Journal of Operational Research, 266(3), 1013-1024.
[16] Lee, C. Y. (2019). Decentralized allocation of emission permits by Nash data envelopment analysis in the coal-fired power market. Journal of Environmental Management, 241, 353-362.
[17] Lee, C. Y., & Johnson, A. L. (2015). Measuring efficiency in imperfectly competitive markets: An example of rational inefficiency. Journal of Optimization Theory and Applications, 164(2), 702-722.
[18] Lee, C. Y., & Wang, K. (2019). Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier. European Journal of Operational Research, 273(1), 390-400.
[19] Lee, C. Y., Wang, K., & Sun, W. (2019). Allocation of emissions permit for China's iron and steel industry in an imperfectly competitive market: a Nash equilibrium DEA method. IEEE Transactions on Engineering Management.
[20] Leggett, J. A., Elias, B., & Shedd, D. T. (2012). Aviation and the European Union's Emission Trading Scheme. Congressional Research Service, 9.
[21] Li, Y., Wang, Y. Z., & Cui, Q. (2016). Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012. Energy, 96, 8-22.
[22] Lozano, S., Villa, G., & Brännlund, R. (2009). Centralised reallocation of emission permits using DEA. European Journal of Operational Research, 193(3), 752-760.
[23] Mekaroonreung, M., & Johnson, A. L. (2012). Estimating the shadow prices of SO2 and NOx for US coal power plants: a convex nonparametric least squares approach. Energy Economics, 34(3), 723-732.
[24] Nash, J. (1951). Non-cooperative games. Annals of mathematics, 286-295.
[25] Zhou, P., Ang, B. W., & Poh, K. L. (2008). Measuring environmental performance under different environmental DEA technologies. Energy Economics, 30(1), 1-14.