跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林士傑
Shih-Chieh Lin
論文名稱: 低溫多晶矽之製作與特性分析
The study of Characteristics of Low-Temperature Polycrystalline Silicon thin film Prepared by Metal Induced Crystallization
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 中文
論文頁數: 78
中文關鍵詞: 低溫多晶矽鎳金屬誘發結晶雷射輔助電漿激發式化學氣相沈積
外文關鍵詞: LAPECVD, Ni-MIC, LTPS
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中利用鎳(Ni)金屬誘發的方式,使沉積在二氧化矽(SiO2)/矽(Si)基板上的非晶矽(a-Si)薄膜經低溫退火產生結晶,並探討矽結晶的型態與可能的形成機制。以快速退火(Rapid Thermal Annealing;RTA)的方式預先對鎳薄膜做退火,使Ni聚集成一顆一顆的叢集,之後沉積非晶矽於其上,再經退火處理時得以使鎳擴散至非晶矽薄膜後,形成用以誘發結晶的矽化鎳(NiSi2)晶種,以期使結晶晶粒較直接鍍覆金屬在非晶矽薄膜上所得的晶粒大。實驗中發現Ni與非晶矽薄膜於550℃下退火2小時,即可使非晶矽薄膜轉變成多晶矽(poly-Si)。
    此外,以雷射輔助電漿激發式化學氣相沉積系統(LAPECVD)成長非晶矽薄膜亦可有效的改善薄膜的特性,使薄膜結晶所需的熱處理時間可以明顯的縮短。我們以LAPECVD在室溫下成長非晶矽薄膜,不但可大幅降低製程的熱預算(thermal budget)外,也可以使用成本較低的玻璃基板。以低溫熱處理在短時間內使非晶矽結晶成為多晶矽,符合一般業界在低溫多晶矽製程方面,希望降低成本且增加產能的需求與期望。


    In the study, the amorphous silicon (a-Si) thin film deposited on SiO2/Si substrate by Laser Assisted Plasma Enhanced Chemical Vapor Deposition(LAPECVD) was crystallized during annealing process at low temperature by Ni-induced crystallization.
    Ni film was turned into to Ni clusters by Rapid Thermal Annealing(RTA).After that,a-Si film was grown by LAPECVD on Ni.Finally,Ni diffused to the a-Si interface to form NiSi2 and promote Si crystallization during annealing.
    a-Si film could be fully crystallized by annealing at 550℃ for 2hours in N2 ambient.
    Besides,a-Si film grown by LAPECVD could have better quality and be crystllized more efficient than those by PECVD.By means of a-Si film grown by LAPECVD at room temperature, we can reduce thermal budget of process and use cheaper glass substrate instead of quartz.To make a-Si film fully crystallized at low temperature in a short time,we can meet the requirement and anticipation of the industry in making LTPS.

    論文摘要 I 表目錄 V 圖目錄 VI 第一章 緒論 1 1.1背景及研究動機 1 1.2實驗目的 4 第二章 文獻回顧與理論背景 5 2.1液晶顯示器 5 2.2低溫多晶矽製作方式 7 2.2.1固相結晶 7 2.2.2準分子雷射退火結晶 7 2.2.3金屬誘發結晶 8 2.3鎳金屬誘發結晶的機制 9 2.4二氧化碳雷射輔助電漿激發式化學氣相沉積原理….………11 2.4.1電漿激發式化學氣相沉積原理……………….……….11 2.4.2二氧化碳雷射誘發化學氣相沉積系統………………..13 第三章 實驗裝置與方法 16 3.1 LAPECVD系統 16 3.1.1 PECVD系統………………………………………..….16 3.1.2 二氧化碳雷射與光學系統……………………………18 3.2試片製備 19 3.3雷射輔助非晶矽薄膜沉積 22 3.4試片分析 24 3.4.1原子力顯微鏡分析…………………………………......24 3.4.1.1原子力顯微鏡…………………………………...24 3.4.1.2原子力顯微鏡原理……………………………...24 3.4.2掃瞄式電子顯微鏡分析………………………………..25 3.4.2.1掃瞄式電子顯微鏡……………………………...25 3.4.2.2掃瞄式電子顯微鏡原理………………………...25 3.4.3拉曼光譜量測…………………………………………..26 3.4.3.1拉曼光譜………………………………………...26 3.4.3.2拉曼光譜量測原理……………………………...26 3.4.3.3大角度入射的拉曼光譜測定方法……………...27 3.4.4薄膜X光繞射分析……………………………………..28 3.4.4.1 X光繞射儀……………………………………...28 3.4.4.2 X光繞射儀原理……………………………...…28 3.4.4.3低掠角X光繞射……………….………..…...…29 第四章 結果與討論 30 前言 30 4.1非晶矽層的結晶型態(Ni預先RTA)…………………………30 4.1.1原子力顯微鏡分析……………………………….…….30 4.1.2掃瞄式電子顯微鏡分析………………………….…….30 4.1.3拉曼光譜分析…………………………………………..31 4.1.4薄膜X光繞射分析……….………………………..…..31 4.1.5 Ni薄膜的效應………..……………………….………..32 4.2非晶矽層的結晶型態(雷射輔助) 34 4.2.1原子力顯微鏡分析 34 4.2.2掃瞄式電子顯微鏡分析………………………..………34 4.2.3拉曼光譜分析 35 4.2.4薄膜X光繞射分析 35 4.2.5雷射輔助成長非晶矽的效應…………………………..36 第五章 結論 37 參考文獻 39

    [1] S. D. Brotherton, J. R. Ayres, M. J. Edwards, C. A. Fisher, C. Glaister, J. P. Gowers, D. J. McCulloch, and M. Trainor, “Laser crystallised poly-Si TFTs for AMLCDs”, Thin Solid Films, 337, 188 (1999).
    [2] A. Wohllebe, R. Carius, L. Houben , A. Klatt, P. Hapke ,J. Klomfaß, H. Wagner, “Crystallization of amorphous Si films for thin film solar cells”, Journal of Non-Crystalline Solids, 227-230, 925 (1998).
    [3] Y. J. Choi, W. K. Kwak, K. S. Cho, S. K. Kim, and Jin Jang, “Hydrogenated amorphous silicon thin-film transistor with a thin gate insulator“, IEEE Electron Device Lett., 21, 18 (2000).
    [4] W. J. Sah, J. L. Lin, and S. C. Lee, “High-performance a-Si:H thin-film transistor using lightly doped channel“, IEEE Trans. Electron Devices, 38, 676 (1991).
    [5] K. Khakzar, and E. H. Lueder, “Modeling of amorphous-silicon thin-film transistors for circuit simulations with SPICE”, IEEE Trans. Electron Devices, 3, 1428 (1992).
    [6] Z. Shengdong, Z. Chunxiang, J. K. O. Sin, J. N. Li, and P. K. T. Mok, “Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass”, IEEE Trans. Electron Devices, 47, 569 (2000).
    [7] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K.Miyata, and H. Kawakami, “High performance low-temperature poly-Si n-channel TFTs for LCD,” IEEE Trans. Electron Devices, 36, 351 (1989).
    [8] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, 40, 1876 (1994).
    [9] M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films”, IEEE Trans. Electron Devices, 43, 561 (1996).
    [10] G. K. Giust and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering”, IEEE Trans. Electron Devices, 43, 561 (1996).
    [11] T. Serikawa, and F. Omata, “High-mobility poly-Si TFTs fabricated on flexible stainless-steel substrates, “IEEE Electron Device Lett. 20, 574 (1999).
    [12] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature”, Appl. Phys. Lett. 73, 3214 (1998)
    [13] K. Andrade and J. Jang, “Gold Induced Crystallization of Amorphous Silicon”, Journal of the Korean Physical Society, 39, 376 (2001).
    [14] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films”, J. Appl. Phys. 84, 194 (1998).
    [15] S. W. Lee, Y. C. Jeon, and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett. 66, 1671 (1995).
    [16] A. Y. Kuznetsov and B. G. Svensson, “Nickel atomic diffusion in amorphous silicon”, Appl. Phys. Lett. 66, 2229 (1995).
    [17] K. N. Tu and J. W. Mayer, “in Thin Films-Interdiffusion and Reactions”, edited by J. M. Poate, K. N. Tu, and J. W. Mayer , Wiley, New York, 359 (1978).
    [18] E. A. Guliants and W. A. Anderson, “Study of dynamics and mechanism of metal-induced silicon growth”, J. Appl. Phys. 89, 4648 (2001).
    [19] E. A. Guliants, W. A. Anderson, L. P. Guo, V. V. Guliants, ”Transmission electron microscopy study of Ni silicides formed during metal-induced silicon growth”, Thin Solid Films, 385, 74 (2001).
    [20] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films”, J. Appl. Phys. 73, 8279 (1993).
    [21] S. Y. Yoon, S. K. Kim, J. Y. Oh, Y. J. Choi, W. S. Shon, C. O. Kim, and J. J, “A High-performance polycrystalline silicon thin-film transistor using metal-induced crystallization with Ni solution”, Jpn. J. Appl. Phys. 37, 7193 (1998).
    [22] 莊達人著, “VLSI製造技術”, 高立圖書出版社, 第146頁~第234頁, (2000).
    [23] 丁勝懋著,“雷射工程導論”, 中央圖書出版社, 第173頁~第242頁, (1995).
    [24] 蔡宏盛著, 二氧化碳雷射在化學氣相沉積法(CVD)上的應用,國立中央大學博士論文, (2000).
    [25] F. Secco d´ Aragona, “Dislocation Etch for (100) Planes in Silicon”, J. Elechtrochem. Soc. 119, 948 (1972).
    [26] D. Bäuerle, “Chemical Processing with Laser”, Springer-Verlag Berlin Heidelberg, (1986).
    [27] W.W.Duley, “Laser Processing and Analysis of Materials”, Plenum Press, (1983).
    [28] H.S. Tsai, G.J. Jaw, S.H. Chang, C.C. Cheng, C.T. Lee, and H.P. Liu, “Laser-assisted plasma-enhanced chemical vapor deposition of silicon nitride thin film”, Surface and Coatings Technology, 132, 158 (2000).

    QR CODE
    :::