| 研究生: |
林士傑 Shih-Chieh Lin |
|---|---|
| 論文名稱: |
低溫多晶矽之製作與特性分析 The study of Characteristics of Low-Temperature Polycrystalline Silicon thin film Prepared by Metal Induced Crystallization |
| 指導教授: |
李清庭
Ching-Ting Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 低溫多晶矽 、鎳金屬誘發結晶 、雷射輔助電漿激發式化學氣相沈積 |
| 外文關鍵詞: | LAPECVD, Ni-MIC, LTPS |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗中利用鎳(Ni)金屬誘發的方式,使沉積在二氧化矽(SiO2)/矽(Si)基板上的非晶矽(a-Si)薄膜經低溫退火產生結晶,並探討矽結晶的型態與可能的形成機制。以快速退火(Rapid Thermal Annealing;RTA)的方式預先對鎳薄膜做退火,使Ni聚集成一顆一顆的叢集,之後沉積非晶矽於其上,再經退火處理時得以使鎳擴散至非晶矽薄膜後,形成用以誘發結晶的矽化鎳(NiSi2)晶種,以期使結晶晶粒較直接鍍覆金屬在非晶矽薄膜上所得的晶粒大。實驗中發現Ni與非晶矽薄膜於550℃下退火2小時,即可使非晶矽薄膜轉變成多晶矽(poly-Si)。
此外,以雷射輔助電漿激發式化學氣相沉積系統(LAPECVD)成長非晶矽薄膜亦可有效的改善薄膜的特性,使薄膜結晶所需的熱處理時間可以明顯的縮短。我們以LAPECVD在室溫下成長非晶矽薄膜,不但可大幅降低製程的熱預算(thermal budget)外,也可以使用成本較低的玻璃基板。以低溫熱處理在短時間內使非晶矽結晶成為多晶矽,符合一般業界在低溫多晶矽製程方面,希望降低成本且增加產能的需求與期望。
In the study, the amorphous silicon (a-Si) thin film deposited on SiO2/Si substrate by Laser Assisted Plasma Enhanced Chemical Vapor Deposition(LAPECVD) was crystallized during annealing process at low temperature by Ni-induced crystallization.
Ni film was turned into to Ni clusters by Rapid Thermal Annealing(RTA).After that,a-Si film was grown by LAPECVD on Ni.Finally,Ni diffused to the a-Si interface to form NiSi2 and promote Si crystallization during annealing.
a-Si film could be fully crystallized by annealing at 550℃ for 2hours in N2 ambient.
Besides,a-Si film grown by LAPECVD could have better quality and be crystllized more efficient than those by PECVD.By means of a-Si film grown by LAPECVD at room temperature, we can reduce thermal budget of process and use cheaper glass substrate instead of quartz.To make a-Si film fully crystallized at low temperature in a short time,we can meet the requirement and anticipation of the industry in making LTPS.
[1] S. D. Brotherton, J. R. Ayres, M. J. Edwards, C. A. Fisher, C. Glaister, J. P. Gowers, D. J. McCulloch, and M. Trainor, “Laser crystallised poly-Si TFTs for AMLCDs”, Thin Solid Films, 337, 188 (1999).
[2] A. Wohllebe, R. Carius, L. Houben , A. Klatt, P. Hapke ,J. Klomfaß, H. Wagner, “Crystallization of amorphous Si films for thin film solar cells”, Journal of Non-Crystalline Solids, 227-230, 925 (1998).
[3] Y. J. Choi, W. K. Kwak, K. S. Cho, S. K. Kim, and Jin Jang, “Hydrogenated amorphous silicon thin-film transistor with a thin gate insulator“, IEEE Electron Device Lett., 21, 18 (2000).
[4] W. J. Sah, J. L. Lin, and S. C. Lee, “High-performance a-Si:H thin-film transistor using lightly doped channel“, IEEE Trans. Electron Devices, 38, 676 (1991).
[5] K. Khakzar, and E. H. Lueder, “Modeling of amorphous-silicon thin-film transistors for circuit simulations with SPICE”, IEEE Trans. Electron Devices, 3, 1428 (1992).
[6] Z. Shengdong, Z. Chunxiang, J. K. O. Sin, J. N. Li, and P. K. T. Mok, “Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass”, IEEE Trans. Electron Devices, 47, 569 (2000).
[7] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K.Miyata, and H. Kawakami, “High performance low-temperature poly-Si n-channel TFTs for LCD,” IEEE Trans. Electron Devices, 36, 351 (1989).
[8] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, 40, 1876 (1994).
[9] M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films”, IEEE Trans. Electron Devices, 43, 561 (1996).
[10] G. K. Giust and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering”, IEEE Trans. Electron Devices, 43, 561 (1996).
[11] T. Serikawa, and F. Omata, “High-mobility poly-Si TFTs fabricated on flexible stainless-steel substrates, “IEEE Electron Device Lett. 20, 574 (1999).
[12] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature”, Appl. Phys. Lett. 73, 3214 (1998)
[13] K. Andrade and J. Jang, “Gold Induced Crystallization of Amorphous Silicon”, Journal of the Korean Physical Society, 39, 376 (2001).
[14] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films”, J. Appl. Phys. 84, 194 (1998).
[15] S. W. Lee, Y. C. Jeon, and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett. 66, 1671 (1995).
[16] A. Y. Kuznetsov and B. G. Svensson, “Nickel atomic diffusion in amorphous silicon”, Appl. Phys. Lett. 66, 2229 (1995).
[17] K. N. Tu and J. W. Mayer, “in Thin Films-Interdiffusion and Reactions”, edited by J. M. Poate, K. N. Tu, and J. W. Mayer , Wiley, New York, 359 (1978).
[18] E. A. Guliants and W. A. Anderson, “Study of dynamics and mechanism of metal-induced silicon growth”, J. Appl. Phys. 89, 4648 (2001).
[19] E. A. Guliants, W. A. Anderson, L. P. Guo, V. V. Guliants, ”Transmission electron microscopy study of Ni silicides formed during metal-induced silicon growth”, Thin Solid Films, 385, 74 (2001).
[20] C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films”, J. Appl. Phys. 73, 8279 (1993).
[21] S. Y. Yoon, S. K. Kim, J. Y. Oh, Y. J. Choi, W. S. Shon, C. O. Kim, and J. J, “A High-performance polycrystalline silicon thin-film transistor using metal-induced crystallization with Ni solution”, Jpn. J. Appl. Phys. 37, 7193 (1998).
[22] 莊達人著, “VLSI製造技術”, 高立圖書出版社, 第146頁~第234頁, (2000).
[23] 丁勝懋著,“雷射工程導論”, 中央圖書出版社, 第173頁~第242頁, (1995).
[24] 蔡宏盛著, 二氧化碳雷射在化學氣相沉積法(CVD)上的應用,國立中央大學博士論文, (2000).
[25] F. Secco d´ Aragona, “Dislocation Etch for (100) Planes in Silicon”, J. Elechtrochem. Soc. 119, 948 (1972).
[26] D. Bäuerle, “Chemical Processing with Laser”, Springer-Verlag Berlin Heidelberg, (1986).
[27] W.W.Duley, “Laser Processing and Analysis of Materials”, Plenum Press, (1983).
[28] H.S. Tsai, G.J. Jaw, S.H. Chang, C.C. Cheng, C.T. Lee, and H.P. Liu, “Laser-assisted plasma-enhanced chemical vapor deposition of silicon nitride thin film”, Surface and Coatings Technology, 132, 158 (2000).