跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭威廷
Wei-Ting Kuo
論文名稱: 應用於遠距醫療照護之無損心電圖壓縮演算法與其嵌入式平台之實現
Implementation of An Effective ECG Lossless Compression Algorithm on the Embedded Platform Combined with the Telemedicine Application
指導教授: 蔡宗漢
Tsung-Han Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 生醫訊號資料壓縮
外文關鍵詞: Bioengineering Signals, Data Compression
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在有著24小時的ECG (Electro-cardiography)心電訊號監護儀器或多導程的心電圖量測裝置如Holter system 能供醫生對患者進行數日之連續心電圖量測的情況下,一個能達到即時且高壓縮率的訊號壓縮處理方法可以有效降低避免心電圖資訊因為長期監測而產生的龐大資料量造成網路頻寬與儲存空間的負擔。然而訊號壓縮可分為無損(Lossless)與有(Lossy)壓縮。對於醫療人員而言,如果能提供即時(Real Time)的無損心電訊號壓縮不但能有效提升醫療人員診斷心血管疾病的準確度也能提供後續的醫療應用。為了達成此目的我們利用參考前幾筆的心電資料之可變動式的預測模組(Adaptive Linear Prediction)來降低動態預測誤差跟一個內容可變式的哥倫布編碼(Content - Adaptive Golomb rice coding)來提升整體系統壓縮率。最後我們也利用 MIT-BIH Arrhythmia 的資料庫包含48組兩導程(Lead II、Lead V1)的心電資料來做壓縮效能評估,結果顯示利用本論文所提出的有效無損心電圖壓縮演算法在經MIT-BIH Lead II資料庫內壓縮率能達到2.77x、經MIT-BIH Lead V1資料庫內壓縮率能達到2.83x。除此之外,我們也將此壓縮演算法開發在嵌入式系統當中能達到方便攜帶並用於遠距醫療之相關應用。


    With a 24-hour ECG (Electro-cardiography) signal monitoring system such as Holter system, it would be produced huge amount of data. It is helpful to reduce the data of ECG signal and save storage space by presenting an idea that combine an effective electrocardiogram (ECG) compression algorithm However, signal compression can be divided into lossless and lossy compression. In this thesis, we present an idea that combine an effective ECG lossless data compression with the telemedicine in order to save storage space and reduce transmission time. Different from literatures, we use the Adaptive Linear Prediction to reduce dynamic prediction range and Content – Adaptive Golomb rice coding to raise the compression ratio. Finally, we also take MIT-BIH Arrhythmia Database as the input pattern which contains 48 two-lead recordings, the result show in MIT-BIH Lead II database that compression ratio (CR) is 2.77x and in MIT-BIH Lead V1 database the compression ratio is 2.83x. Furthermore, we also implement the proposed compression algorithm on the embedded development board which is suitable for Telemedicine application.

    摘要 I ABSTRACT II TABLE OF CONTENTS III LIST OF FIGURES V LIST OF TABLES VI CHAPTER 1 序論 1 1.1 研究背景與動機 2 1.2 心電訊號介紹 4 1.3 心律變異性分析 8 1.4 心律不整資料庫 9 1.5 心電圖訊號壓縮演算法介紹 10 1.6 章節組織介紹 13 CHAPTER 2 心電圖訊號壓縮編碼演算法 14 2.1 心電圖訊號壓縮流程 15 2.2 可變動式預測編碼 16 2.3 內容可變動適哥倫布編碼 21 2.4 壓縮演算法輸入與輸出關係 25 CHAPTER 3 心電圖訊號壓縮解碼演算法 26 3.1 心電圖訊號解壓縮流程 27 3.2 壓縮串流分解 28 3.3 預測差值分解並還原 28 3.4 預測編碼還原 30 CHAPTER 4 心電壓縮系統之嵌入式系統設計 31 4.1 硬體架構說明 32 4.2 系統架構說明 35 4.3 實作之實際量測情況 38 CHAPTER 5 壓縮演算法效能評估與比較結果 39 5.1 演算法效能評估 40 5.2 原始與重建訊號比較 46 5.3 文獻比較 47 CHAPTER 6 結論 48 參考文獻 50

    [1] 謝孟蝶。遠距照護產業營運模式-以心電圖監測為例。台灣台北:國立政治大學智慧產研究所碩士論文,2010。
    [2] 張慈映。心電圖計應用市場分析。台灣新竹:工業技術研究院,2009。
    [3] Cunningham J.G., Textbook of veterinary Physiology(3rd edition), Saunders, 2002
    [4] 心電圖,維基百科,http://en.wikipedia.org/wiki/Electrocardiography.
    [5] ECG-Learning Center, http://library.med.utah.edu/kw/ecg/index.html
    [6] N. J. Holter, “New methods for heart studies,” Science., vol. 134, pp. 1214, 1961.
    [7] G. B. Moody, R. G. Mark, “The Impact of the MIT-BIH Arrhythmia Database,” IEEE Eng. Med. Biol. Mag., vol 20, no. 3, pp.45-50, 2001.
    [8] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, “PhysioBank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals,” Circulation., vol. 101, no. 23, pp. e215-e220, 2000.
    [9] R. E. Hermes, D. B. Geselowitz, and G.C. Oliver, “Development, distribution, and use of the American Heart Association database for ventricular arrhythmia detector evaluation,” in Computers in Cardiology 1980. Long Beach, CA: IEEE Comput. Soc. Press, PP.263-266, 1981
    [10] A. Taddei, A. Biagini, G. Distante et al., “ The European ST-T database: development, distribution, and use,” in Computers in Cardiology 1990. Los Alamitos, CA: IEEE Comput. Soc. Press, pp.177-180, 1991.
    [11] B. Singh,A. Kaur,and J. Singh,“A Review of ECG Data Compression Techniques,” International Journal of Computer Application, vol. 116, no. 11 pp. 0975-8887, April. 2015.
    [12] 戴顯權,“資料壓縮(二版)”旗標出版股份有限公司。
    [13] Q. Zhou , “ Study on ECG Data Lossless Compression Algorithm Based on K-means Cluster”, ETP International Conference on Future Computer and Communication ,2009
    [14] E. Chua and W. C. Fang, “Mixed bio-signal lossless data compressor for portable brain-heart monitoring systems,” IEEE Trans. Consum. Electron, vol. 57, no.1, pp.267-273, Feb, 2011
    [15] S. G. Miaou and S. N. Chao “ Wavelet-based lossy-to-lossless ECG compression in a unified vector quantization framework”. IEEE Trans. Biomed. Eng., 52:539–543. ,2005
    [16] K. Pan, F. Chen, K.- T. Cheng, and R. Huan, “Real-time lossless ECG compression for low-power wearable medical devices based on adaptive region prediction,” Electron. Lett. , 2014, vol. 50, no. 25, pp. 1904-1906, 2014.
    [17] G. A. Luo, S. L. Chen and T. L. Lin, “ VLSI implementation of a lossless ECG encoder design with fuzzy decision and two-stage Huffman coding for wireless body sensor network,” Information, Communications and Signal Processing (ICICS), Tainan, pp. 1–4, Dec. 2013.
    [18] C. J. Deepu and Y. Lian, “A joint QRS detection and data compression scheme for wearable sensors,” IEEE Transactions on Biomedical Engineering. , pp. 165-175, July. 2014.
    [19] C. J. Deepu and Y. Lian, “A low complexity lossless compression scheme for wearable ECG sensors,” IEEE International Conference on Digital Signal Processing. (DSP), Singapore, pp. 449–453, Jul. 2015.
    [20] S. L. Chen, H. Y. Lee, C. A. Chen, H. Y. Huang, “Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications,” IEEE Systems Journal, pp. 398-409, Oct. 2009.
    [21] 華緯生醫有限公司,http://www.hwbio.com.tw/EKG_tc.htm
    [22] W. Leon-Salas, “Encoding compressive sensing measurements with Golomb-Rice codes,” IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, pp. 2177–2180, May. 2015.
    [23] S.-J. Lee, and M. Lee, “A Real-Time ECG Data Compression and Transmission Algorithm for an e-Health Device,” IEEE Transactions on Biomedical Engineering., vol. 58, no. 9 pp. 2448-2455, Sept. 2011.
    [24] S.-C. Tai, C.-C. Sun, and W.-C. Tan, “2-D ECG compression method based on wavelet transform and modified SPIHT,” IEEE Transactions on Biomedical Engineering., vol. 52, no. 6, pp.999-1008, Jun. 2005

    QR CODE
    :::