| 研究生: |
陳瑞遠 Rui-Yuan Chen |
|---|---|
| 論文名稱: |
不同水砂比及渠道坡度對沖積扇型態之影響 |
| 指導教授: | 周憲德 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 沖積扇 、渠道坡度 、積水深度 、堆積角度 |
| 外文關鍵詞: | Alluvial fan, Channel slope, Base level, Foreset, Topset |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地震頻繁,土層淺薄且鬆軟,加上近年全球氣候急遽變化,高強度降雨事件增加,使得山崩、岩屑滑移與土石流事件發生頻率極高。台灣地狹人稠,山麓沖積扇成為許多村莊、公路的聚集地及必經之路。若土石流災害發生時,將對村莊、公路造成嚴重的損失。本實驗使用顆粒為粗砂,並設定不同坡度的渠道、不同濃度的水砂比(n)以及沖積平台上不同的積水深度進行實驗,藉此觀察沖積扇的型態變化。實驗改變參數為渠道坡度、水砂比(n)、平台積水深度,觀察沖積扇的縱剖面、橫剖面、平面堆積型態與歷程及頂積層(topset)、前積層(foreset)的狀態。縱剖面和橫剖面的堆積高度隨平台積水深增加而增加,堆積長度則相反;在無積水深時,平面堆積範圍最大且扇緣形狀不規則,隨著積水深增加,範圍逐漸縮小且趨於圓弧形;前積層角度因積水深度變深傾向安息角。頂積層角度則是隨水砂比增加或積水深增加而變小。渠道坡度越陡,使沖積扇堆積長度增加、使堆積高度降低,對堆積角度並無直接關係。但是整體而言,渠道坡度相較於水砂比與積水深度對沖積扇的型態影響較不明顯。
Due to the impact of global climate change and fragile geological background, the slope-land disasters such as landslides and debris flows caused by highly intense rainstorms occur more frequently in Taiwan. Alluvial fans at foothills in Taiwan often accommodate villages and infrastructures, and are high-risk areas prone to the landslides and debris flows. In this study, the formation and the process of alluvial fans is explored by using experimental study with a small-scale flume basin model equipping with silo, laser lights and cameras. By changing the sediment concentration (i.e., the ratio of sediment discharge(Qs) to water discharge (QW)) and the base-level water depths, the longitudinal profiles, cross profiles, fan shapes, angles of topset and foreset angle have been analyzed. The size of the silo opening and particle size control the particle discharge. The longitudinal profiles of the fans depict a concave shape, while the lateral profiles are convex. The angles of topset slope decrease with decreasing sediment concentration, while the foreset slopes with tail water are close to the friction angle of the sediment. Overall, the effect of channel slope on the formation of fan is less than sediment concentration and the base level.
[1] 林枏恩 (2013),「土石流形成沖積扇過程之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[2] 吳侑謙 (2015),「顆粒特性及水流條件對顆粒體運動及淤積型態之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。[3] 吳俊銓 (2012),「山洪濁流形成沖積扇之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[4] 張瑞津、石再添、楊淑君、林譽方、陳翰霖 (1994),「花東縱谷沖積扇的地形學研究」,師大地理研究報告,第21期.
[5] 張瑞津 (1997),「臺灣沖積扇之分布、形態及地形意義」,地質17 卷,1-2 期,69-93.
[6] 曾文毅 (2014),「不同輸砂濃度及基準水面條件下之沖積扇形態分析」,碩士論文,國立中央大學土木工程研究所,中壢。
[7] 黃郅軒 (2011),「儲槽內顆粒流動與發聲特性之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[8] 孫稜翔 (2011),「八卦臺地山麓沖積扇型態之研究」,地理學報,第六十一期:81-104.
[9] Blair T. C. and McPherson J. G. (1994),“Alluvial fans and their natural distinction from rivers based on morphology,, hydraulic processes, sedimentary processes and facies assemblages,, J. Sed. Res., A64(3), 450-489.
[10] Bull W. B. (1964),“Geomorphology of segmented alluvial fans in western Fresno County, California. In: US Geological Survey,, Professional Papers, 352, 89–129.
[11] Chant L., Pease P. ,Tchakerian V. (1999), “Modelling Alluvial Fan Morphology,, Earth Surf. Process. Landforms24, 641-652.
[12] Clarke L., Quine T., Nicholas A. (2010),“An experimental investigation of autogenic behaviour during alluvial fan evolution,, Geomorphology 115 (2010) 278–285.
[13] Giles P.(2010), “Investigating the use of alluvial fan volume to represent fan size in morphometric studies,, Geomorphology 121 (2010) 317–328.
[14] Guerit L., Etivier F., Devauchelle O, Lajeunesse E.and Barrier L. (2014), “Laboratory alluvial fans in one dimension,, Physical Review E90, 022203.
[15] Iverson R. M. , Schilling S. P., Vallance J. W. (1998),“Objective delineation of lahar-inundation hazard zones,, GSA Bulletin; August; v. 110; no. 8; p. 972–984.
[16] Kim W. and Muto T. (2007), “Autogenic response of alluvial bedrock transition to base-level variation: Experiment and theory,, Journal Of Geophysical Research, VOL. 112, F03S14.
[17] Kochel, R.C.(1990),“Humid fans of the Appalachian Mountains,, Alluvial Fans: A Field Approach, pp 109-129.
[18] Miller K., Reitz D. and Jerolmack D. (2014), “Generalized sorting profile of alluvial fans,, Research Letter 10.1002/2014GL060991.
[19] Nanninga P. and Wasson R. (1985), “Caiculation of the Volume of an Alluvial Fan,, Mathematical Geology , Vol. 17 , No.1.
[20] Nicholas A., Clarke L. and Quine T. (2009), “A numerical modelling and experimental study of flow width dynamics on alluvial fans,, Earth Surf. Process. Landforms 34, 1985–1993.
[21] Reitz M. and Jerolmack D. (2012), “Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth,, Journal Of Geophysical Research, VOL. 117, F02021.