| 研究生: |
歐陽順 Shun Ou-Yang |
|---|---|
| 論文名稱: |
多孔性廢棄物燒製調濕建材之研究 The research for sintering porous wastes into humidity adjusting construction materials |
| 指導教授: |
王鯤生
Kuen-Sheng Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 多孔性 、吸濕效率 、助熔劑 |
| 外文關鍵詞: | flux, Porous, moisture absorption efficiency |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討利用多孔性廢棄物與天然材料混合燒製調濕性建材之可行性,主要針對其配比、燒製條件及燒成材料特性等進行實驗研究。藉由燒成體之燒結狀況、吸濕率、樣品多元回歸與標準化來選擇適當之樣品並進一步分析其燒失率、收縮率、抗折強度、體密度、視比重、孔隙率、吸水率。以利探討設定參數之相互影響性,並提出燒製調濕建材最佳之條件。
本研究選擇廢棄矽藻土、煤灰、火山灰及鹿沼土作為混合配比之材料,燒製溫度由各配比不同由900~1300℃,為增加燒結件之強度在混合配比中外添加1~7﹪之硼酸納為燒結時之助熔劑,由以上之條件進行燒成實驗。燒製完成之燒成件進行吸濕率之檢測。在四種配比之燒成件中,以矽藻土與火山灰混合之燒成件其吸濕效率較佳。因此選擇此混合配比之燒結件作進一步之分析。
在燒結件基本性質分析中,燒失率方面:在相同燒製溫度下,廢棄物比例90%及助熔劑添加2%可以得到較低之燒失率。收縮率方面:廢棄物比例90%可以降低收縮率,但燒製溫度、助熔劑比例越高則收縮率越高。抗折強度方面:廢棄矽藻土與強度成反比之現象;燒製溫度與助熔劑添加比例則反之。
在孔隙性質分析中,孔隙率、吸水率方面:廢棄物比例90%、不添加助熔劑、燒製溫度較低時,燒結件之孔隙率與吸水率較高。在吸放濕速率與效率方面則與上述條件下產生之情況相同。
由於本研究之目的在於將廢棄物有效利用燒製為調濕建材,在設定之實驗參數所燒製之燒結件經過測試後,主要影響調濕建材效率的影響因素為廢棄物添加比例及助熔劑的添加比例。但考量未來調濕建材之實用性,因此在本研究燒製調濕建材的最佳條件,以廢棄物添加90﹪、助熔劑添加1~2﹪、燒製溫度範圍1000~1100℃之間,均可使調濕建材得到良好的吸濕效果。
This research the possibility for sintering porous wastes and mixing natural ingredients into humidity adjusting construction materials. The research is executed mainly pursuant to the mixing ratio, sintering conditions, and characters of sintering materials. The proper samples are selected according to the sinter status of sinter body, moisture absorption efficiency, sampling multiple regression and standardization. Further analysis for ignition loss, shrinkage ratio, bending strength, bulk density and apparent density, porosity and water absorption are then taken as to benefit for mutual influences of setting parameters. The best requirements for sintering humidity adjusting construction materials is also submitted.
Spent diatomaceous earth, coal ash, volcanic ash, Allophane are chosen as the ingredient for the mixing formula. Sintering temperatures range between 900~1300℃ due to different mixing ratios among all formulas. 1~7% Sodium Perborat (Na2B4O7) is added into the mixing formula as the flux for enhancing the strength of the sinter body. The sintering experiment is executed according to the conditions mentioned above. The inspection of moisture absorption efficiency is taken on the finished sinter body. Among four sinter bodies each with its own unique mixing formula, the sinter body made of mixing spent diatomaceous earth and volcanic ash produces better moisture absorption efficiency and is thus chosen for taking further analysis. In anti-bending strength.
In respect of basic character analysis of sinter bodies, the ignition loss: under the same sinter temperature, the mixing formula with 90% of wastes, and adding 2% flux can deliver a lower ignition loss. In the term of shrinkage ratio: the formula with 90% wastes can reduce shrinkage ratio but higher temperature and higher ratio of flux can result in higher shrinkage ratio. In the anti-bending strength: a reverse relationship exists between the ratio of Spent diatomaceous earth and strength. However, there is a positive relationship between sinter temperature and addition quantity of flux.
In porosity character analysis, porosity ratio and moisture absorption: under the conditions of 90% of wastes, non-addition of flux, and lower sinter temperature will lead to higher porosity ratio and moisture absorption ratio of sinter body. The conditions mentioned above produce the same results in moisture absorption and release ratio and efficiency.
The research aims at sintering wastes into humidity adjusting construction materials effectively. After the sinter body made of prescribed experimental parameters is tested, major factors influencing the efficiency of humidity adjusting construction materials are the addition ratio of wastes and addition quantity of flux. As the practicability of futuristic humidity adjusting construction materials is taken into consideration, the best conditions for sintering humidity adjusting construction materials in this research are addition of 90% waste, 1~2% flux, and sintering temperature range of 1000~1100℃ which can enabling humidity adjusting construction materials to produce excellent moisture absorption effects.
參考文獻
﹝1﹞工業廢棄物清理與資http://www.iw-recycling.org.tw/page2-2.asp
﹝2﹞李建平,宋振元,邱福安,黃哲信,陳柏仰,溫桓正,「煤灰資源化再
利用事業可行性研究」,臺電工程月刊(2007)P57-64。
﹝3﹞Sun Joy 網站 http://sunjoy.myweb.hinet.net/diatomite.htm
﹝4﹞九十年度農委會科技計畫期中摘要報告 重要作物疫病蟲害整合性管理技術之研發與管理 審議編號:90210121060203C1 農委會計畫編號:90農科-6.2.3-農-C1 主管機關:行政院農業委員會 執行單位:農業試驗所 計畫主持人:安寶貞 聯絡人:蔡志濃
﹝5﹞謝國鎔,「廢矽藻土活化再生為多孔性材料」,碩士論文,嘉南藥理科技大學,仁德(2003)。
﹝6﹞陳崇智「工業污染防治季刊」104期,經濟部工業局 (2007)p127-134。
﹝7﹞服部和彦、福水浩史、野上正行,アロフェン系調湿建材に関する研-調湿建材の材料設計(2006)。
﹝8﹞福水 浩史,横山 茂,北村 和子,「アロフェン系調湿建材に関する研究―調湿建材の材料設計―」(2006)
﹝9﹞調湿建材性能評価委員会,「調湿建材の調湿性能評価基準」(平成18年3月)。
﹝10﹞維基百科 http://zh.wikipedia.org。
﹝11﹞曲遠方,「功能陶瓷材料」,曉園出版社,台北(2006)。
﹝12﹞程道腴,潘德華譯,「窯業原料手冊」,徐式基金會出版,台北(1992)。
﹝13﹞汪建民等「陶瓷技術手冊」,中華民國粉末冶金協會,(1994)。
﹝14﹞伍祖璁,黃錦鐘譯「粉末冶金學」高立圖書公司,台北(1995)。
﹝15﹞German, R. M.“Sintering Theory and Practice”, John Wiley & Sons,(1996).
﹝16﹞Jung,B.and Schobert,H.H.,“Viscous Sintering of Coal Ashes.
Relationships of Sinter Point and Sinter Strength to Particle Size and Composition”Energy & Fuels 5(4) 555 (1991).
﹝17﹞Skrifvars B. J., Hupa M., Backman R. and Hiltunen M. “Sintering Mechanismsof FBC Ashes”Fuel 73(2) 171 (1994).
﹝18﹞西北輕工業學院,「陶瓷工藝學」,中國輕工業出版社,(1993)。
﹝19﹞葉宗智,「垃圾焚化飛灰粒徑對燒結效果之研究」,碩士論文,國立中央大學環境工程研究所,中壢(1997)。
﹝20﹞Nowok J.W.,Hurley J.P.and Benson S.A.“The Role of Sulphate-Silicate Phase Separation in the Sintering Propensities of Coal Fly-ash at 800-1000℃”Journal of the Institute of Energy 69 12 (1996).
﹝21﹞張君偉,「水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響」,碩士輪文,國立中央大學環境工程研究所,中壢(2000)。
﹝22﹞程道腴、鄭武輝,「科學圖書大庫---工業陶瓷」,徐式基金會出版,(1998)。
﹝23﹞IAWG(The International Ash Working Group),“Municipal Solid Waste Incinerator Residues”,Elsevie, (1997).
﹝24﹞Xavier Q (uerol, Andres Alastuey, Jose L., Fernandez-Turiel and Angel Lopez157 Soler “Synthesis of Zeolite by Alkaline Activation of Ferro-Aluminous Fly Ash” Fuel 74(8) 1226 (1995).
﹝25﹞魏玉麟、洪崇舜,「熱處理含鉛鎘吸附劑之研究」,第十三屆廢棄物處理技術研討會論文集,高雄市,p355 (1998)。
﹝26﹞Vassilev S.V.,Braekman-Danheux C.,Laurent Ph., Thiemann T., Fontana A.“Behaviour, Capture and Inertization of Some Trace Elements During Combustion of Refuse-Derived Char From Municipal Solid Waste”Fuel 78(26) 1131 (1999).
﹝27﹞魏玉麟、呂雅湘,「混合及單項吸附劑對鉛吸附之探討」,第十四屆廢棄物處理技術研討會論文集,中壢,p3-108 (1998)。
﹝28﹞Steenar B.M. and Lindqvist O.“High-Temperature Reaction of Straw Ash and the Anti-Sintering Additives Kaolin and Bolomite”Biomass and Bioenergy 14 NO.167 (1998).
﹝29﹞水谷 惟恭等著,黃忠良譯「工業陶瓷製程」 ,復漢出版社,(1986)。
﹝30﹞Chan Chris C.Y., Kirk Donald, “Behaviour of Metals Under the Conditions of Roasting MSW Incinerator Fly Ash With Chlorinating” Journal of Hazardous Materials 64 75 (1999).
﹝31﹞劉宗諭,「焚化飛灰在負壓氣氛下肢燒結特性」,碩士論文,國立中央大學環境工程研究所,中壢(1998)。