| 研究生: |
葉修邦 Shiou-bang Yeh |
|---|---|
| 論文名稱: |
在矽樹脂上建構磺甜菜鹼雙離子自組裝薄膜 以提升其生物相容性 Sulfobetainesilane Modified Silicone Elastomers for Durable Enhanced Biocompatibility |
| 指導教授: |
黃俊仁
Chun-jen Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 生物相容性 、矽樹脂 、磺甜菜鹼 、雙離子 、自組裝 |
| 外文關鍵詞: | Biocompatibility, Anti-fouling, Sulfobetaine, Zwitterionic, Self-assembling |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫療器材表面的蛋白質及微生物的非特異性吸附容易引發諸如凝血反應、微生物感染以及組織鈣化等生物自發性的各項負面效應。過去研究證明表面電中性的親水性修飾能有效降低非特異性吸附。然而在矽利康(silicone)材料方面,由於其本身的高度疏水再生性質(hydrophobic regeneration),造成難以在材料表面上進行穩定的親水性修飾。本研究以帶有矽烷官能基的磺甜菜鹼兩性離子分子(sulfobetainesilane, SBSi)在聚二甲基矽烷(polydimethylsiloxane, PDMS)矽利康材料進行自組裝單層膜(self-assembled monolayers, SAMs)修飾,已獲得親水性表面修飾的矽利康基材並進一步證明能抵抗非特異性吸附。以X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS)分析表面原素成分。以接觸角側角儀(contact angle goniometer)判斷親水材料修飾的效果以及隨著時間在空氣中保存的材料表面親水修飾之穩定性。修飾後的矽利康基材對於表皮葡萄球菌(Staphylococcus epidermidis)和綠膿桿菌(Pseudomonas aeruginosa)有顯著的抗細菌吸附效果。抵抗蛋白質貼附的方面本研究也成功測試了修飾後的矽利康基材對於牛血清白蛋白(bovine-serum-albumin, BSA),黏蛋白(mucin)以及溶菌.(lysozyme)有良好的抵抗效果。以包覆磺酸羅丹明B (Sulforhodamine B,SRB)的微酯體證明抵抗酯質貼附能力。並成功使磺甜菜鹼兩性離子分子修飾後的矽利康水膠軟式隱形眼鏡(silicone hydrogel soft contact lens)抵抗綠膿桿菌之黏附。利用本研究的成果,可以將矽利康在醫療照護上更安全且更有效發揮其功能。最後,我們利用SBSi超親水的特性,使表面具有抗霧、自潔的功能,並成功製備油水分離系統,以快速回收純水。
Biofouling on biomaterials causes adverse consequences to health, such as thrombosis, infection, and pathogenic calcification. Hydrophilic and charge-balanced surface is proved to resist the nonspecific absorption. Unfortunately, the state-of-art technology for silicone modification cannot provide a stable and effective coating for the long-term applications under complex conditions. In this study, we aim to modify the silicone surfaces with a zwitterionic surface ligand to resist nonspecific adsorption of protein and bacteria. We synthesized a silanized surface ligand conjugated with a head residue of zwitterionic sulfobetaine (SBSi) that bears positively charged quaternary amine and negatively charged sulfonate. Surface elemental composition was confirmed by X-ray photoelectron spectroscopy (XPS) and the stability of hydrophilicity modification was tested by contact angle goniometer. The tests for adsorption of bacteria, protein, and liposome revealed the excellent antifouling properties of modified silicones. For the real-world application, we modified commercially available silicone hydrogel contact lenses with developed zwitterionic ligands and showed their capability of anti-bacterial adhesion. The strategy of surface engineering in this work can be applied to other silicone-based medical devices in facile and effective fashion. Moreover, we employed the super hydrophilicity of SBSi for preparing anti-fogging, self-cleaning surfaces. We accomplished a water-oil separation system for effective recovery of fresh water.
1. Haynes, C.A. and W. Norde, Globular proteins at solid/liquid interfaces. Colloids and Surfaces B: Biointerfaces, 1994. 2(6): p. 517-566.
2. Busscher, H.J. and A.H. Weerkamp, Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiology Letters, 1987. 46(2): p. 165-173.
3. Daeschel, M.A. and J. McGuire, Interrelationships between protein surface adsorption and bacterial adhesion. Biotechnology & Genetic Engineering Reviews, Vol. 15, 1998. 15: p. 413-438.
4. Klevens, R.M., et al., Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep, 2007. 122(2): p. 160-6.
5. Maki, D.G., D.M. Kluger, and C.J. Crnich, The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc, 2006. 81(9): p. 1159-71.
6. Stamm, W.E., Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am J Med, 1991. 91(3B): p. 65S-71S.
7. Warren, J.W., Catheter-associated urinary tract infections. Infect Dis Clin North Am, 1997. 11(3): p. 609-22.
8. Riley, D.K., et al., A large randomized clinical trial of a silver-impregnated urinary catheter: Lack of efficacy and staphylococcal superinfection. The American Journal of Medicine, 1995. 98(4): p. 349-356.
9. Zhao, J., et al., Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. Journal of Membrane Science, 2011. 369(1–2): p. 5-12.
10. Chen, S.F., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
11. Harris, J.M., Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications. 1992, Springer Science & Business Media.
12. Chang, Y., et al., Hemocompatibility of Poly(vinylidene fluoride) Membrane Grafted with Network-Like and Brush-Like Antifouling Layer Controlled via Plasma-Induced Surface PEGylation. Langmuir, 2011. 27(9): p. 5445-5455.
13. Li, L., et al., Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers: The Molecular Basis for Nonfouling Behavior. The Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941.
14. Li, M., et al., Surface Modification of Silicone for Biomedical Applications Requiring Long-Term Antibacterial, Antifouling, and Hemocompatible Properties. Langmuir, 2012. 28(47): p. 16408-16422.
15. Prime, K.L. and G.M. Whitesides, Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces. Science, 1991. 252(5010): p. 1164-1167.
16. Zanini, S., et al., Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene films: Chemical characterization and evaluation of the protein adsorption. Journal of Colloid and Interface Science, 2010. 341(1): p. 53-58.
17. Li, D., et al., Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis. Acta Biomaterialia, 2009. 5(6): p. 1864-1871.
18. Zanini, S., et al., Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates. European Physical Journal D, 2009. 54(2): p. 159-164.
19. Wang, Z.-G., L.-S. Wan, and Z.-K. Xu, Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science, 2007. 304(1–2): p. 8-23.
20. Zanini, S., et al., Plasma-induced graft-polymerisation of ethylene glycol methacrylate phosphate on polyethylene films. Polymer Degradation and Stability, 2008. 93(6): p. 1158-1163.
21. Ostuni, E., et al., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p. 5605-5620.
22. Li, L., S. Chen, and S. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. J Biomater Sci Polym Ed, 2007. 18(11): p. 1415-27.
23. Keefe, A.J., N.D. Brault, and S.Y. Jiang, Suppressing Surface Reconstruction of Superhydrophobic PDMS Using a Superhydrophilic Zwitterionic Polymer. Biomacromolecules, 2012. 13(5): p. 1683-1687.
24. Jiang, S. and Z. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials, 2010. 22(9): p. 920-932.
25. Cheng, G., et al., Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 2009. 30(28): p. 5234-5240.
26. Zhang, Z., et al., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-7.
27. Jiang, S. and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater, 2010. 22(9): p. 920-32.
28. Estephan, Z.G., P.S. Schlenoff, and J.B. Schlenoff, Zwitteration As an Alternative to PEGylation. Langmuir, 2011. 27(11): p. 6794-6800.
29. Bernards, M.T., et al., Nonfouling Polymer Brushes via Surface-Initiated, Two-Component Atom Transfer Radical Polymerization. Macromolecules, 2008. 41(12): p. 4216-4219.
30. Zhang, Z., et al., Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. The Journal of Physical Chemistry B, 2006. 110(22): p. 10799-10804.
31. Chiang, Y.-C., et al., A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes. Journal of Membrane Science, 2012. 389(0): p. 76-82.
32. Chang, Y., et al., Hemocompatible Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling. Langmuir, 2009. 26(5): p. 3522-3530.
33. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
34. Krishna, O.D., K. Kim, and Y. Byun, Covalently grafted phospholipid monolayer on silicone catheter surface for reduction in platelet adhesion. Biomaterials, 2005. 26(34): p. 7115-7123.
35. Wu, L., et al., Synthesis of a Zwitterionic Silane and Its Application in the Surface Modification of Silicon-Based Material Surfaces for Improved Hemocompatibility. ACS Applied Materials & Interfaces, 2010. 2(10): p. 2781-2788.
36. Yoda, R., Elastomers for biomedical applications. J Biomater Sci Polym Ed, 1998. 9(6): p. 561-626.
37. Chu, P.K., et al., Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 2002. 36(5–6): p. 143-206.
38. Polydimethylsiloxane. Available from: http://en.wikipedia.org/wiki/Polydimethylsiloxane.
39. C, E.N.a.M.-C., Comprehensive Biomaterials. Development of Contact Lenses from a Biomaterial Point of View – Materials, Manufacture, and Clinical Application. 2011: Elsevier.
40. Oláh, A., H. Hillborg, and G.J. Vancso, Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Applied Surface Science, 2005. 239(3–4): p. 410-423.
41. Bodas, D. and C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectronic Engineering, 2006. 83(4–9): p. 1277-1279.
42. Delamarche, E., et al., Microcontact Printing Using Poly(dimethylsiloxane) Stamps Hydrophilized by Poly(ethylene oxide) Silanes. Langmuir, 2003. 19: p. 8749-8758.
43. Hellmich, W., et al., Poly(oxyethylene) Based Surface Coatings for Poly(dimethylsiloxane) Microchannels. Langmuir, 2005. 21(16): p. 7551-7557.
44. Demming, S., et al., Characterization of long-term stability of hydrophilized PEG-grafted PDMS within different media for biotechnological and pharmaceutical applications. physica status solidi (a), 2011. 208(6): p. 1301-1307.
45. Zhang, Z., et al., Environmentally friendly surface modification of PDMS using PEG polymer brush. ELECTROPHORESIS, 2009. 30(18): p. 3174-3180.
46. Sharma, V., et al., Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic applications. Vacuum, 2007. 81(9): p. 1094-1100.
47. Bodas, D. and C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectronic Engineering, 2006. 83(4-9): p. 1277-1279.
48. Keefe, A.J., N.D. Brault, and S. Jiang, Suppressing Surface Reconstruction of Superhydrophobic PDMS Using a Superhydrophilic Zwitterionic Polymer. Biomacromolecules, 2012. 13(5): p. 1683-1687.
49. Liu, P., et al., Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Mater Sci Eng C Mater Biol Appl, 2013. 33(7): p. 3865-74.
50. Araki, J., Electrostatic or steric? - preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter, 2013. 9(16): p. 4125-4141.
51. Dow Corning issues guide to silane solutions. Anti-Corrosion Methods and Materials, 2005. 52(6): p. 371-371.
52. Gedde, U.W., A. Hellebuych, and M. Hedenqvist, Sorption of low molar mass silicones in silicone elastomers. Polymer Engineering and Science, 1996. 36(16): p. 2077-2082.
53. Litt, M. and T. Matsuda, Siloxane zwitterions: Synthesis and surface properties of crosslinked polymers. Journal of Applied Polymer Science, 1975. 19(5): p. 1221-1225.
54. X-ray photoelectron spectroscopy. Available from: http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy.
55. Estephan, Z.G., J.A. Jaber, and J.B. Schlenoff, Zwitterion-Stabilized Silica Nanoparticles: Toward Nonstick Nano. Langmuir, 2010. 26(22): p. 16884-16889.
56. Eddington, D.T., J.P. Puccinelli, and D.J. Beebe, Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sensors and Actuators B-Chemical, 2006. 114(1): p. 170-172.
57. Hillborg, H., et al., Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane). Langmuir, 2004. 20(3): p. 785-794.
58. Owen, M.J. and P.J. Smith, Plasma Treatment of Polydimethylsiloxane. Journal of Adhesion Science and Technology, 1994. 8(10): p. 1063-1075.
59. Tan, S.H., et al., Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010. 4(3).
60. Hillborg, H. and U.W. Gedde, Hydrophobicity changes in silicone rubbers. Ieee Transactions on Dielectrics and Electrical Insulation, 1999. 6(5): p. 703-717.
61. Hillborg, H. and U.W. Gedde, Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer, 1998. 39(10): p. 1991-1998.
62. Bodas, D. and C. Khan-Malek, Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment - An SEM investigation. Sensors and Actuators B-Chemical, 2007. 123(1): p. 368-373.
63. Pertsin, A.J. and M. Grunze, Computer Simulation of Water near the Surface of Oligo(ethylene glycol)-Terminated Alkanethiol Self-Assembled Monolayers†. Langmuir, 2000. 16(23): p. 8829-8841.
64. Zheng, J., et al., Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study. Biophysical Journal, 2005. 89(1): p. 158-166.
65. Hirota, K., et al., Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. Fems Microbiology Letters, 2005. 248(1): p. 37-45.
66. Patel, J.D., et al., Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions. Journal of Biomedical Materials Research Part A, 2005. 73A(3): p. 359-366.
67. Fujii, K., et al., Prevention of biofilm formation with a coating of 2-methacryloyloxyethyl phosphorylcholine polymer. Journal of Veterinary Medical Science, 2008. 70(2): p. 167-173.
68. Cheng, K.H., et al., Incidence of contact-lens-associated microbial keratitis and its related morbidity. Lancet, 1999. 354(9174): p. 181-5.
69. Nayak, N. and G. Satpathy, Slime production as a virulence factor in Staphylococcus epidermidis isolated from bacterial keratitis. Indian J Med Res, 2000. 111: p. 6-10.
70. Henriques, M., et al., Adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to silicone-hydrogel contact lenses. Optom Vis Sci, 2005. 82(6): p. 446-50.
71. Yu, Y., P.Q. Ying, and G. Jin, Competitive adsorption between bovine serum albumin and collagen observed by atomic force microscope. Chinese Chemical Letters, 2004. 15(12): p. 1465-1468.
72. Venault, A., et al., Surface anti-biofouling control of PEGylated poly(vinylidene fluoride) membranes via vapor-induced phase separation processing. Journal of Membrane Science, 2012. 423: p. 53-64.
73. Lin, P., et al., Nonfouling Property of Zwitterionic Cysteine Surface. Langmuir, 2014.
74. Dumbleton, K., Noninflammatory silicone hydrogel contact lens complications. Eye Contact Lens, 2003. 29(1 Suppl): p. S186-9; discussion S190-1, S192-4.
75. Bontempo, A.R. and J. Rapp, Protein-lipid interaction on the surface of a hydrophilic contact lens in vitro. Current Eye Research, 1997. 16(8): p. 776-781.
76. Maissa, C., et al., Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optom Vis Sci, 1998. 75(9): p. 697-705.
77. Kota, A.K., et al., Hygro-responsive membranes for effective oil-water separation. Abstracts of Papers of the American Chemical Society, 2012. 244.
78. Kwon, G., et al., On-demand separation of oil-water mixtures. Adv Mater, 2012. 24(27): p. 3666-71.
79. Li, J., et al., Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. Journal of Materials Chemistry, 2012. 22(19): p. 9774-9781.
80. Yang, H.W., et al., Polydopamine-coated nanofibrous mats as a versatile platform for producing porous functional membranes. Journal of Materials Chemistry, 2012. 22(33): p. 16994-17001.
81. Brown, V.J., Industry issues: Putting the heat on gas. Environ Health Perspect, 2007. 115(2): p. A76.
82. Brown, P.S., O.D. Atkinson, and J.P. Badyal, Ultrafast oleophobic-hydrophilic switching surfaces for antifogging, self-cleaning, and oil-water separation. ACS Appl Mater Interfaces, 2014. 6(10): p. 7504-11.
83. Sim, D.M., et al., Ultra-High Optical Transparency of Robust, Graded-Index, and Anti-Fogging Silica Coating Derived from Si-Containing Block Copolymers. Advanced Optical Materials, 2013. 1(6): p. 428-433.
84. Han, Y.C., et al., Preparation of anti-fogging low density polyethylene film by using gamma-irradiation. Sensors and Actuators B-Chemical, 2007. 126(1): p. 266-270.
85. Jia, Y., et al., Anti-fogging and anti-reflective silica nanofibrous film fabricated by seedless flame method. Materials Letters, 2013. 108: p. 200-203.
86. Lou, B.Y., et al., Preparation of hydrophilic acrylic glass film and its anti-fogging properties. Rare Metal Materials and Engineering, 2008. 37: p. 252-255.