| 研究生: |
吳錚 Cheng Wu |
|---|---|
| 論文名稱: |
以射頻濺鍍製作HIT太陽能電池之研究 Research on HIT Solar Cell using Radio-frequency Sputtering |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 載子生命週期 、鈍化層 、磁控濺鍍 、HIT太陽能電池 |
| 外文關鍵詞: | Lifetime, Passivation, Ratio-Frequency Sputtering, HIT Solar Cell |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究特色是採用磁控濺鍍製作HIT太陽能電池,比起CVD製程磁控濺鍍有著便宜又無汙染且可低溫製程的優點,剛好能與HIT太陽能電池低溫製程的特性相匹配。
實驗中使用磁控濺鍍來成長含氫矽薄膜,藉由調變製程溫度以及製程氣體流量在矽基板上沉積本質氫化非晶矽薄膜當做鈍化層,使其載子生命週期經退火後量測能達到797μs。並將其運用於HIT太陽能電池上,於適當選擇薄膜製程條件下,可在平面型矽晶片獲得9.08%轉換效率的HIT太陽能電池。
關鍵字:載子生命週期、鈍化層、磁控濺鍍、HIT太陽能電池
The Characteristic of this research is used Ratio-Frequency Sputtering to fabricate HIT solar cell. The advantage of Ratio-Frequency Sputtering is cheap、 no pollution and low temperature than CVD manufacture. Sputtering exactly can match the manufacturing characteristics with HIT solar cell.
This experiment is used Ratio-Frequency Sputtering to glow hydrogenated amorphous silicon. Changing deposition temperature and gas flow to deposit intrinsic hydrogenated amorphous silicon on silicon wafer for passivation, lifetime can reach 797μs after furnace then use the result to HIT solar cell, finally can get 9.08% efficiency HIT solar cell in appropriate deposition condition.
Keyword:Lifetime、Passivation、Ratio-Frequency Sputtering、HIT Solar Cell
[1.1] Photon International, http:/www.photon-magazine.com/
[1.2] W. Schockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells” , Appl. Phys. Lett. 32 (1961) 510-519.
[1.3] I. Alferov, “The history and future of semiconductor heterostructures from the point of view of a Russian scientist” , Phys. Scr. 68 (1996) 32-45
[1.4] I. Alferov, “Classical heterostructures paved the way” , III-Vs Review 11(1) (1998) 26-31.
[1.5] T. Calow, J. Deasley, J. Owen, et al, “A Review of Semiconductor Heterojunctions ” , J. Mater. Sci. 2(1) (1967) 88-96.
[1.6] A. H. Kalma, J. C. Corelli, Phys. Rev. Lett. 173 (1968) 374.
[1.7] A. J. Lewis, “Use of hydrogen in the transport properties of amorphous germanium” , Phys. Rev. B 14 (1970) 658-668.
[1.8] M. Iwamoto, K. Minami, T. Yamaoki, “Photovoltaic device” , United States Patent, No.5066340 (1991)
[1.9] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, “Development of new a-Si/c-Si Heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)” , Appl. Phys. Lett. 31 (1992) 3518-3522.
[1.10] K. S. Ji, J. H. Choi, H. J. Yang, H. M. Lee, D. K. Kim,“A study of crystallinity in amorphous Si thin films for silicon heterojunction solar cells” , Sol. Energy Mater. Sol. Cells 95 (2011) 203-206.
[1.11] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota,“HITTM Cells─High-Efficiency Crystalline Si Cells with Novel Structure” , Photovolatics: research and applications (2000) 503-513.
[1.12] M. Tanaka, et al, “Development of hit solar cells with more than 21% conversion efficiency and commercialization of highest performance hit modules” , Photovoltaic Energy Conversion (2003) 955-958
[1.13] M. Taguchi, A. Terakawa, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, “Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business” , Photovoltaic Energy Conversion (2006) 1455-1460
[1.14] A. Ogane, Y. Tsunomura, D. Fujishima, A. Yano, H. Kanno, T. Kinoshita, H. Sakata, M. Taguchi, H. Inoue and E. Maruyama, “Recent progress of HIT solar cells heading for the higher conversion efficiencies” , 21th International Photovoltaic Science and Engineering Conference, Fukuoka, (2011).
[1.15] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si” , Appl. Phys. Lett. 31 (1977) 292-294.
[1.16] B. Jagannathan, W. A. Anderson, J. Coleman, “Amorphous silicon/p-type crystalline silicon heterojunction solar cells” , Sol. Energy Mater. Sol. Cells 46 (1997) 289-310.
[2.1] 莊達人,《VLSI製造技術》,高立圖書有限公司 (2005)
[2.2] W. R. Grove, “On the electro-chemical polarity of gases” , Phil. Trans. 142, (1852) 87-101.
[2.3] J. K. Robertson and C. W. Clapp, “Removal of metallic deposits by high-frequency currents” , Nature 132 (1933) 479-480.
[2.4] J. I. Lodge and R. W. Stewart, “Studies in high frequency discharges” , Can. J. Res. 26A (1948) 205-221.
[2.5] 田民波,《薄膜技術與薄膜材料》,五南圖書出版股份有限公司 (2007)
[2.6] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社 (2009)
[2.7] S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices” , Prentice-Hall (2001).
[2.8] D. A. Neamen, “Semiconductor Physics and Devices” , McGraw-Hill (2003)
[2.9] 莊嘉琛,《太陽能工程-太陽電池篇》,全華圖書股份有限公司 (2008)
[2.10] R. W. Collins, C. Y. Huang, “Optical properties of amorphous multilayer structures” , Physical Review B 34 issue 4 2910-2913 (1986).
[2.11] 許峰誠,《以射頻濺鍍製作異質接面矽太陽能電池之研究》,中央大學碩士論文 (2011)
[2.12] S. Fonash, “SOLAR CELL DEVICE PHYSICS” , Elsevier Inc. (2010).
[2.13] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, (Prentice-Hall publications, 2001).
[2.14] T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, “Development status of high efficiency HIT solar cells” , Sol. Energy Mater. Sol. Cells 95 (2011) 18-21.
[2.15] Y. Yan, M Page, T. H. Wang, M. Jassim, M. Branz, Q. Wang, “Atomic structure and electronic properties of c-Si/a-Si:H heterointerfacies” , Appl. Phys. Lett. 88 (2006) 121925.
[2.16] R. Schropp and M. Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology” , (Kluwer Academic Publishers, 1998).
[3.1] 許樹恩、吳泰伯,《X光繞射原理與材料結構分析》,民全書局 (1993)
[3.2] R. W. Collins, C. Y. Huang, “Optical properties of amorphous multilayer structures” , Phys. Rev. B 34 (1986) 2910-2913.
[3.3] HORIBA傅立葉轉換紅外線光譜儀(FTIR)使用手冊
[3.4] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon” , Phys. Rev. B 45 (1992) 13367-13377.
[3.5] M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda, S. Nakano, “Sol. Energy Mater. Sol. Cells” , 34/1-4 (1994) 541.
[3.6] 張庭維,《以定光電流量測之吸收係數分析矽薄膜缺陷密度之研究》,國立中央大學碩士論文 (2010)
[3.7] 王宣文,《以濺鍍法製作矽異質接面太陽能電池之研究:矽薄膜特性對原件效率的影響》,國立中央大學博士論文 (2012)
[3.8] W. J. Wang, C. L. Zhou, “Lifetime measurement for minority carrier of crystalline silicon solar cells” , China Measurement Technology vol.33 No.6 (2007).
[4.1] K. Fukutani, M. Kanbe, W. Futako, B. Kaplan, T. Kamiya, C.M. Fortmann, I. Shimizu, “Band gap tuning of a-Si:H from 1.55eV to 2.10eV by intentionally promoting structural relaxation” , J. Non-Cryst. Solids 227-230 (1998) 63-67.
[4.2] C. Koch, M. Ito, M. Schubert, “Low-temperature deposition of amorphous silicon solar cells” , Sol. Energy Mater. Sol. Cells 68 (2001) 227-36.
[4.3] R. Schropp and M. Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology” , Kluwer Academic Publishers (1998).
[4.4] H. Curtins, M. Favre, in: H. Fritzsche (Ed.), “Advances in Amorphous Semiconductors: Amorphous Silicon and Related Materials” , World Scientific, Singapore (1989) 329.
[4.5] M. Jeon , S. Yoshiba, K. Kamisako, “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique” , Curr. Appl. Phys. 10 (2010) 237–240.
[5.1] U. Das , S. Bowden, M. Burrows , S. Hegedus , R. Birkmire, “Effect of process parameter variation in deposited emitter and buffer layers on the performance of silicon solar heterojunction solar cells” , 2 (2006) 1283-1286.
[5.2] H. Fujiwara, M. Kondo, “Effects of a‐Si:H layer thicknesses on the performance of a‐Si:H/c‐Si heterojunction solar cells” , J. Appl. Phys. 101 (2007) 054517.
[7.1] 周凌毅,《反應式濺鍍過渡態矽薄膜之研究》,中央大學碩士論文 (2009)