| 研究生: |
曾御翔 Yu-Hsiang Tseng |
|---|---|
| 論文名稱: |
一個寬電壓操作範圍使用振盪器增益校正技術之全數位展頻時脈產生器 A Wide-Supply-Voltage-Range All Digital Spread-Spectrum Clock Generator With the DCO Gain Calibration Technique |
| 指導教授: |
鄭國興
Kuo-Hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 展頻時脈產生器 、全數位式鎖相迴路 |
| 外文關鍵詞: | Spread-spectrum clock generator, All-digital phase locked loop |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個應用於 SATA-I/SATA-II 規格的全數位展頻時脈產生器(ADSSCG),全數位展頻時脈產生器由鎖相迴路(PLL)與展頻控制電路所組成,展頻控制電路採用直接調變數位控制振盪器(DM-DCO)實現真實小數除數,並降低量化雜訊。振盪器增益校正電路以全數位實現,可以抵抗製程、電壓與溫度的變異(anti-PVT-variation),因此在 0.75(0.6 V)、1.5(0.7 V)和 3 GHz(1 V)的操作頻率下皆能實現 5000 ppm 的向下展頻量。當展頻模式啟動時,鎖相迴路使用開迴路以降低功率消耗。本論文中還提出一個應用於振盪器的高解析度電晶體變容器。展頻時脈產生器以全數位設計,因此可以擁有較寬的操作電壓範圍。
全數位展頻時脈產生器採用 TSMC 90 nm MSG 1P9M CMOS 製程實現,鎖相迴路可操作在 0.6 V 至 1.3 V 的電源電壓範圍。整體晶片與核心電路面積分別為 730 × 805 μm 2 與 162 × 238 μm 2。當全數位展頻時脈產生器操作在 1.5 GHz(0.7 V)時,所測得的電磁干擾抑制量為 11.15 dB,未開啟與開啟展頻模式的均方根抖動分別為 2.23 ps 與 2.35 ps,對於應用於 SATA-I 之規格,全數位展頻時脈產生器可在 0.7 至 1.1 V 的電源電壓範圍內提供 1.5 GHz 的操作頻率。當全數位展頻時脈產生器操作在 3 GHz(1 V)時,測得的電磁干擾抑制量為14.23 dB,未開啟與開啟展頻模式的均方根抖動分別為 0.94 ps 和 1.02 ps,對於應用於 SATA-II 之規格,全數位展頻時脈產生器可以在 1.0 至 1.3 V 的電源電壓範圍內提供 3 GHz 的操作頻率。操作在 0.75 GHz 時的最低電源電壓為 0.6 V,測得的電磁干擾抑制量為 9.59 dB,未開啟與開啟展頻模式的均方根抖動分別為 4.12 ps 和 4.74 ps。展頻模式在 0.75(0.6 V)、1.5(0.7 V)和 3 GHz(1 V)下的功率消耗分別為 0.32、0.67 和 2.22 mW。因此,本論文之全數位展頻時脈產生器適合應用於寬範圍操作電壓之系統與 SATA-I/SATA-II 之規格。
This thesis proposes an all-digital spread spectrum clock generator (ADSSCG) for SATA-I/SATA-II applications. The ADSSCG consists of a phase-locked loop (PLL) and a spread spectrum scheme. The spread spectrum control circuit uses direct modulation digital controlled oscillator (DM-DCO) to achieve fractional frequency division ratios and reduce quantization noise. The DCO’s digital gain corrector has an automatic calibration scheme under process, voltage and temperature variations. Therefore, it can achieve a down-spread frequency of 5000 ppm at operating frequencies of 0.75 (at 0.6 V), 1.5 (at 0.7 V) and 3 GHz (at 1 V). When the spread spectrum mode is activated, this PLL adopted an opened loop scheme for low power consumption. This thesis also introduces a high-resolution transistor varactor for DCO. The digital type ADSSCG scheme is easy to obtain a wider power supply voltage working range.
This ADSSCG is implemented with TSMC 90 nm MSG 1P9M CMOS process, and the PLL can operate within a power supply voltage range of 0.6 V to 1.3 V. The test chip and core areas are 730 × 805 μm2 and 162 × 238 μm2, respectively. When the ADSSCG is running at 1.5 GHz (0.7 V) operating frequency, the measured EMI is reduced by 11.15 dB. The RMS jitters with and without the spread spectrum mode are 2.35 ps and 2.23 ps, respectively. For SATA-I application, the ADSSCG can provide an operating frequency of 1.5 GHz within a power supply voltage range of 0.7 to 1.1 V. When the ADSSCG is running at 3 GHz (3 V) operating frequency, the measured EMI is reduced by 14.23 dB. The RMS jitters with and without the spread spectrum mode are 1.02 ps and 0.94 ps, respectively. For SATA-II application, the ADSSCG can provide an operating frequency of 3 GHz within a power supply voltage range of 1.0 to 1.3 V. For the lowest power supply voltage of 0.6 V at 0.75 GHz, the measured EMI is reduced by 9.59 dB. The RMS jitters with and without the spread spectrum mode are 4.74 ps and 4.12 ps, respectively. The power consumptions of spread spectrum mode at 0.75 (at 0.6 V), 1.5 (at 0.7 V) and 3 GHz (at 1 V) are 0.32, 0.67 and 2.22 mW, respectively. Therefore, this ADSSCG is suitable for wide power supply voltage range system and SATA-I/SATA-II applications.
[1] T. Sudo, H. Sasaki, N. Masuda and J. L. Drewniak “Electromagnetic Interference (EMI) of System-on-Package (SOP),” IEEE Trans. On Advanced Packaging, Vol. 27, no. 2, pp. 304-314, May 2004.
[2] I.-H. Hua “The Design and Implementation of 66/133/266MHz Spread Spectrum Clock Generators,” NTU MS. Thesis, 2002.
[3] A. Shoval, W. Martin and D. A. Johns “A 100 Mb/s BiCMOS Adaptive Pulse-Shaping Filter,” IEEE J. on Selected Areas in Communication, Vol. 13, pp. 1692-1702, Dec. 1995.
[4] H.-S. Li, Y.-C. Cheng and D. Puar “Dual-Loop Spread-Spectrum Clock Generator,” in IEEE Inter. Solid-State Circuits Conference (ISSCC), Dig. Tech. Papers, pp. 184-185, Feb. 1999.
[5] C.-Y. Lin, T.-J. Wang and T.-H. Lin, “A 1.5-GHz sub-sampling fractional-N PLL for spread-spectrum clock generator in 0.18-μm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conference (A-SSCC), Seoul, South Korea, pp. 253–256, Apr. 2017.
[6] W.-Y. Lee and L.-S. Kim, “A spread spectrum clock generator for DisplayPort main link,” IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 58, no. 6, pp. 361–365, Jun. 2011.
[7] S.-G. Bae, S. Hwang, J. Song, Y. Lee and C. Kim, "A ∆∑ modulator-based spread-spectrum clock generator with digital compensation and calibration for phase-locked loop bandwidth," IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 66, no. 2, pp. 192-196, Feb. 2019.
[8] K.-H. Cheng, C.-L. Hung and C.-H. Chang, “A 0.77 ps RMS jitter 6-GHz spread-spectrum clock generator using a compensated phase-rotating technique,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1198–1213, May 2011.
[9] V. Kratyuk, P. -K. Hanumolu, U. -K. Moon and K. Mayaram, “A design procedure for all-digital phase-locked loops based on a charge-pump phase-locked-loop analogy,” IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 54, no. 3, pp. 247–251, Mar. 2007.
[10] M. Zanuso, D. Tasca, S. Levantino, A. Donadel, C. Samori and A. Lacaita, “Noise analysis and minimization in bang-bang digital PLLs,” IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 56, no. 11, pp. 835–839, Nov. 2009
[11] J.-M. Lin and C.-Y. Yang, “A fast-locking all-digital phase-locked loop with dynamic loop bandwidth adjustment,” IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 62, no. 10, pp. 2411–2422, Oct. 2015.
[12] SATA: High Speed Serialized AT Attachment,” Revision 1.0, Serial ATA Workgroup, May 2004.
[13] S.-G. Bae, G. Kim and C. Kim, “A 5-GHz subsampling PLL-based spread-spectrum clock generator by calibrating the frequency deviation,” IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 64, no. 10, pp. 1132–1136, Oct. 2017.
[14] C.-C. Chung, D. Sheng and W.-D. Ho, “A low-cost low-power all-digital spread-spectrum clock generator,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 5, pp. 983–987, May 2015.
[15] X. Huang, K. Zeng, Y. Liu, W. Rhee, T. Kim and Z. Wang, “A 5GHz 200kHz/5000ppm spread-spectrum clock generator with calibration-free two-point modulation using a nested-loop BBPLL,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), Austin, Texas, USA, Apr. 2019.
[16] F. Tang, T. Yang, K. Ye, Z. Li, X. Zhou, Z. Lin, P. Li, S. Hu, M. Li, B. Wang, and A. Bermak, “A 32-step phase-compensated spread-spectrum RF-PLL with 19.44-dB EMI reduction and 10-fs extra RMS jitter,” IEEE Trans. Microwave Theory and Techniques, vol. 68, no. 4, pp. 1564–1575, Apr. 2020.
[17] I.-T. Lee, S.-H. Ku and S.-I. Liu, “An all-digital spread-spectrum clock generator with self-calibrated bandwidth,” IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 60, no. 11, pp. 2813–2822, Nov. 2013.
[18] S.-Y. Lin and S.-I. Liu, “A 1.5 GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3111–3119, Nov. 2009.
[19] N. Da Dalt, P. Pridnig and W. Grollitsch, “An all-digital PLL using random modulation for SSC generation in 65nm CMOS,” in IEEE Inter. Solid-State Circuits Conference (ISSCC), Dig. Tech. Papers, pp. 252–253, Feb. 2013.
[20] H.-R. Lee, O. Kim, G. Ahn, and D. K. Jeong, “A Low jitter 5000 ppm spread spectrum clock generator for multi-channel SATA transceiver in 0.18um CMOS,” in IEEE Inter. Solid-State Circuits Conference (ISSCC), Dig. Tech. Papers, pp. 160–161, Feb. 2005.
[21] D.-S. Shen and S.-I. Liu “A Low-Jitter Spread Spectrum Clock Generator Using FDMP,” IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 54, no. 11, pp. 979–983 Nov. 2007.