| 研究生: |
曾議德 Yi-De Zeng |
|---|---|
| 論文名稱: |
逆斷層錯動下土層之力學及微觀組構變化初探 |
| 指導教授: | 黃文昭 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 逆斷層 、PFC2D 、應力路徑 、最大主應力方向 、剪應變 |
| 外文關鍵詞: | Reverse fault, PFC2D, Stress path, Maximum principal stress direction, Shear strain |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位處歐亞大陸板塊與菲律賓海板塊之交界,工程設計經常要考慮地震的作用,近年如台灣集集大地震、中國汶川大地震、日本福島大地震等活動斷層造成的災害,均使生命財產遭受嚴重損害。為了探究斷層錯動對地表與地下結構的作用,在過去通常由地工離心機進行物理試驗,然而進行物理試驗相當費時且昂貴,因此近幾年許多研究考慮使用有限元素法(Finite Element Method)與離散元素法(Discrete Element Method)等數值方法進行模擬,本研究參考張有毅(2013)、Chu et al., (2015)利用離散元素法對斷層外部特性的研究,藉由此法進一步探討斷層之力學與微觀組構之變化。
本研究中,參考張有毅(2013)砂箱試驗之數值模型,使用PFC2D(Particle Flow Code in Two Dimension)在80g下進行砂箱試驗模擬,其最大垂直位移(h)為5cm。為了得知應力在模型中不同位置的變化,將模型按照深度分成淺、中、深三層,再依照位置分成上盤、過渡區、下盤三個區域,依此原則設置觀測圓讀取數據。而模擬結果顯示,模型中應力狀態主要受斷層側推力、邊界效應與剪裂帶發展影響,其中側推力與邊界效應給予模型水平應力增量,為控制模型內主應力方向最主要因素,剪裂帶影響區域主要在過渡區內。為了進一步了解斷層錯動時微觀組構與應力狀態間的關聯,首先在孔隙的變化以及體積應變的分析中,可發現剪裂帶發生時顆粒排列狀態會發生變化,使得應力狀態變得相當複雜,最後透過剪應變分析,探討斷層模擬中的破壞行為,希望藉此更了解斷層之潛在威脅。
Taiwan is located at the junction of the Eurasian plate and the Philippine Sea plate. Engineering design often takes into account the effects of earthquakes. In recent years, such as Taiwan Chi-Chi earthquake, China Wenchuan earthquake, Japan Fukushima earthquake and other active faults caused serious damage to life and property. In order to explore the effect of fault on the surface and underground structure, physical tests were usually carried out by Centrifuges in the past. However, physical test is time-consuming and expensive. Therefore, many studies consider the use of Finite Element Method (FEM) and Discrete Element Method (DEM) to simulate in recent year. However, when the fault deformation is too large, the FEM will have a greater error, so in order to get results that are more accurate, this study used DEM for reverse fault simulation.
This study referred to the numerical model of sandbox test from Chang (2013). A sandbox test with a maximum vertical displacement of 5cm was simulated at 80g by using PFC2D (Particle Flow Code in Two Dimensions). In order to understand the stress changes in different locations, The model in accordance with the depth into shallow, medium and deep, and then in accordance with the horizontal position into the hanging wall, the transition zone, the footing wall. Then, set the measurement circle by the above principle. The simulation result show that the lateral force of the fault, the boundary effect and the development of the shear zone mainly affected the stress state. Lateral force and the boundary is the most important factor in controlling the principal stress direction. The shear zone mainly affect the transition zone. In order to further understand the relationship between the microstructure and the stress state during fault offsetting, in the analysis of pore change and volumetric strain, it could be found that the state of particle arrangement changed, when the shear zone occurred, stress state became quite complicated. Finally, we discuss the destructive behavior in fault simulation through the shear strain analysis, and hope to know more about the potential threat of fault.
1. 潘國樑,工程地質學導論,科技圖書,臺北市,第173-151頁(2007)。
2. 洪如江,初等工程地質學大綱,財團法人地工技術研究發展基金會,臺北市,第47-48頁(2013)。
3. 林郁鈞,以離散元素法進行具鍵結顆粒材料之直剪試驗模擬,碩士論文,國立中央大學土木工程所,桃園(2014)。
4. 廖泓韻,以微觀角度探討顆粒狀材料在直剪試驗下之力學行為,碩士論文,國立中央大學土木工程所,桃園(2013)。
5. 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程所,桃園(2013)。
6. 宋丘言,「使用離散元素法進行乾砂直剪試驗模擬」,碩士論文,國立中央大學土木工程所,桃園(2012)。
7. Anastasopoulos, I., G. Gazetas, M. Bransby, M. Davies and A. El Nahas., “Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 8, pp.943-958 (2007).
8. Bransby, M.F., Davies, M.C.R., El Nahas, A., Nagaoka, S., “Centrifuge modelling of reverse fault–foundation interaction,” Bull Earthquake Eng, Vol. 6, pp. 607-628 (2008).
9. Chang, Y.Y., Lee, C.J., Huang, W.C., Huang, W.J., Lin, M.L., Hung, W.Y., Lin, Y. H. ”Use of centrifuge experiments and discrete element analysis to model the reverse fault slip,” International Journal of Civil Engineering, Vol. 11, No. 2, pp. 78-89 (2013).
10. Cundall, P. A., “A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems,” Proceedings of the Symposium of the International Society of Rock Mechanics, Vol. 1, No. II-8, pp. 129-136 (1971).
11. Cundall, P. A., and Strack, O. D. L., “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, Vol. 29, No. 1, pp. 47-65(1979).
12. Chang, Y.Y., Lee, C.J., Huang, W.C., Huang, W.J., Lin, M.L., Hung, W.Y., Lin, Y. H. ”Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand,” Engineering Geology, Vol. 184, pp.52-70 (2015).
13. Chu, S.S., Lin, M.L., Huang, W.C., Nien, W.T, Liu, H.C., Chan, P.C., “Simulation of growth normal fault sandbox tests using the 2D discrete element method,” Computers & Geosciences, Vol. 74, pp. 1-12 (2015).
14. Das, B.M., Sobhan, K., Principle of Geotechnical Engineering, Cengage Learning, pp. 379-380 (2010).
15. Deresiewicz, H., “Mechanics of Granular Matter,” Advances in Applied Mechanics, Vol. 5, 233-306(1958).
16. Hibbeler, R.C., Mechanics of Materials, Pearson, pp. 510-511 (2010).
17. Huang, W.C., Sung, C.Y., Liao, H.Y., Chu, S.S., “Micromechanical behavior of granular materials in direct shear modeling,” Journal of the Chinese Institute of Engineers, Vol. 38, No.4, pp. 469-480 (2015).
18. Itasca Consulting Group Inc. PFC2D (Particle Flow Code in 2 Dimensions). Version 4.0 Minneapolis, MN: ICG(2008).
19. Lambe, T.W., “Stress Path Method”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. 6, pp. 309-301(1967).
20. Oettle, N. and J. Bray “Fault Rupture Propagation through Previously
Ruptured Soil,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 5, pp. 1637-1647 (2013).
21. Yimsiri, S., Soga, K., “Micromechanics-basedstress–strain behavior of soils at small strains,” Géotechnique, Vol. 50, No. 5, pp. 559-571 (2000).