| 研究生: |
黃鈞琮 Jyun-Cong Huang |
|---|---|
| 論文名稱: |
應用雙通道微模型探討空氣殘餘型態對新舊水互動的影響 |
| 指導教授: |
李明旭
Ming-Hsu Li 許少瑜 Shao Yiu-Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 微模型 、新舊水 、角落流 |
| 外文關鍵詞: | micro model, new old water, corner flow |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非飽和層中原有殘餘水( “舊水” )的多寡與分佈影響著降雨入滲、灌溉、滲漏等入侵此區域之水( “新水” )的分布型態,且地表下新舊水的互動也影響著地下水水質。
本研究藉由雙管微模型實驗探討孔隙幾何結構、排退與汲取流量,以及舊水殘餘相蒸發對氣泡形成與遷徙機制的影響。並進一步觀測氣泡的型態對於新水注入過程中,新舊水互動的影響。
實驗結果顯示,舊水在新水注入前若有蒸發過程,則會改變舊水殘餘相的位置。而舊水殘餘相位置離出入口越遠,新水注入後越容易產生氣泡。氣泡形成與否不只與殘餘相位置有關;注入流量的不同也會影響氣泡的生成。流量越慢,新水進入管內後越有機會直接與舊水接觸。而氣泡生成後將阻礙新舊水的接觸,新水僅能透過角落流與舊水進行溶質擴散及混合。若注入新水之流量過高時,舊水及氣泡在新水透過角落流接觸舊水之前,就會被推出管外,而不會有新舊水的接觸。在細管內舊水不會因新水的注入而移動,直到流量高於50μL/min,舊水才被推動。
本研究顯示舊水蒸發對於氣泡殘餘有顯著的影響。而氣泡的存在降低了新舊水混合的機率。角落流則可作為新水接觸且混合舊水的橋樑。
The unsaturated zone is an important part of the path for surface water entering groundwater. The amount and location of the residual water (old water) in the vadose zone affects the infiltration of invading water ( new water, e.g., that from rainfall, stream flow, and irrigation water etc.).
In this study, I showed the interaction between "old water" and "new water" under different pumping rates, geometry factor and evaporation level of old water, by using pore doublet micromodel experiment. Air entrapment is a key directly separating the new and old water, and promoting "old water" remaining.
I focus on the air entrapment and what influence on "new and old water interplay". The experimental results show that the evaporation process changes the position of the old water and enhances the air-bubble trapping. The air bubble entrapment reduces the new-old water interplay. And in that case, the new water can only contacted with the old water by corner flow. Under high injection flow rate, the old water and air bubbles were pushed out of the tube before the new water contacted the old water by corner flow. The old water would not be pushed until the capacity up than 50μL/min. This study shows that the evaporation process has a significant effect on the air-bubble trapping. The air bubble reduces the chance of the new-old water mixing. In addition, the corner flow is the path for new water intruding and mixing with the old water.
1. Benner, F. C., Riches, W. W., & Bartell, F. (1938). Nature and importance of surface forces in production of petroleum. Paper presented at the Drilling and Production Practice 1938.
2. Berkowitz, B. (2014). Interchange of Infiltrating and Resident Water in Partially Saturated Media. In Transport and Reactivity of Solutions in Confined Hydrosystems (pp. 55-66): Springer.
3. Blake, T. D. J. J. o. c., & science, i. (2006). The physics of moving wetting lines. 299(1), 1-13.
4. Chaudhury, M. K., & Whitesides, G. M. J. L. (1991). Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly (dimethylsiloxane) and their chemical derivatives. 7(5), 1013-1025.
5. Chaudhury, M. K., & Whitesides, G. M. J. S. (1992). Correlation between surface free energy and surface constitution. 255(5049), 1230-1232.
6. Eral, H., & Oh, J. (2013). Contact angle hysteresis: a review of fundamentals and applications. Colloid and polymer science, 291(2), 247-260.
7. Eral, H., Oh, J. J. C., & science, p. (2013). Contact angle hysteresis: a review of fundamentals and applications. 291(2), 247-260.
8. Falkovich, G. (2011). Fluid mechanics: A short course for physicists: Cambridge University Press.
9. Gao, L., & McCarthy, T. J. J. L. (2006). Contact angle hysteresis explained. 22(14), 6234-6237.
10. Gouet‐Kaplan, M., Tartakovsky, A., & Berkowitz, B. J. W. r. r. (2009). Simulation of the interplay between resident and infiltrating water in partially saturated porous media. 45(5).
11. Hsu, S., Glantz, R., & Hilpert, M. (2011). Pore-scale Analysis of the effects of Contact Angle Hysteresis on Blob Mobilization in a Pore Doublet (Vol. 5).
12. Jokinen, V., Suvanto, P., & Franssila, S. J. B. (2012). Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. 6(1), 016501.
13. Kirchner, J. W., Feng, X., & Neal, C. J. N. (2000). Fractal stream chemistry and its implications for contaminant transport in catchments. 403(6769), 524.
14. Lai, C.-C. (2017). 動態接觸角觀測及其模式探討. National Central University,
15. McDonnell, J. J. (2014). The two water worlds hypothesis: ecohydrological separation of water between streams and trees? , 1(4), 323-329. doi:10.1002/wat2.1027
16. Moore, T. F., & Slobod, R. L. (1956). The effect of viscosity and capillarity on the displacement of oil by water Producers monthly, 20-30.
17. Poynton, C. J. C. F. (2006). What are HSB and HLS? , 28.
18. Ransohoff, T. C., & Radke, C. J. (1988). Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore. Journal of Colloid and Interface Science, 121(2), 392-401. doi:https://doi.org/10.1016/0021-9797(88)90442-0
19. Rhodes, M. J. (2008). Introduction to particle technology: John Wiley & Sons.
20. Shi, Z., Zhang, Y., Liu, M., Hanaor, D. A., Gan, Y. J. C., Physicochemical, S. A., & Aspects, E. (2018). Dynamic contact angle hysteresis in liquid bridges. 555, 365-371.
21. The Dow Chemical Company. (2017). SYLGARD™ 184 Silicone Elastomer Kit. https://consumer.dow.com/en-us/pdp.sylgard-184-silicone-elastomer-kit.01064291z.html?tab=overview&id=01064291z
22. You, C.-Y. (2019). Fabrication of 2.5 D Micromodel for Air-Liquid Interaction Experiment. National Central University,
23. 張晉嘉, 張良正, & 許少瑜. (2017). 以雙通道微模型探討孔隙介質之殘餘量研究.
24. 陳翔. (2017). 以微模型實驗探討蒸發對於孔隙介質內殘留和入滲流體互動之影響. (碩士), 國立中央大學,