跳到主要內容

簡易檢索 / 詳目顯示

研究生: 杜振木
Jhen-mu Du
論文名稱: 探討阿拉伯芥耐熱基因HIT1和HIT2對光合作用之維護機轉
The study of Arabidopsis heat tolerance gene HIT1 and HIT2 involving in the protective mechanism of photosynthesis
指導教授: 吳少傑
Shaw-Jye Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 100
語文別: 中文
論文頁數: 76
中文關鍵詞: 耐熱基因光合作用
外文關鍵詞: heat tolerance gene, photosynthesis
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿拉伯芥 hit1-1 和 hit2 為經由前項式遺傳學方法所找到的熱敏感突變株。 HIT1 在胺基酸序列比對後發現為酵母菌 Vps53p 的同源性蛋白質。酵母菌的 Vps53p是和Vps51p、Vps52p、Vps54p共同組合 GARP (Golgi-associated retrograde protein) 複合體的一個次單元,參與調節內膜體至高爾基氏體之間的反向囊泡運輸。 hit1-1 的對熱不耐受性可能是由於飽和脂肪酸的囊泡運輸過程發生問題,使得細胞膜在高溫逆境下無法調整脂質成份提高熱穩定性。 HIT2 基因所表現的蛋白質為一核運輸受器,參與調節抵抗高溫誘發氧化傷害的機制中。而 hit2 無法耐受持續性高溫逆境以及熱休克逆境,部份原因為光照所誘導活性氧化物質攻擊造成。由於葉綠體類囊膜的熱穩定性與光合作用效率對環境溫度的改變非常敏感,可用來作為探討植物在高溫逆境下所遭受生理傷害的研究指標,並提供線索以作為解析突變基因參與之保護機制。而葉綠素螢光分析為近年來廣泛用於環境逆境生理研究的重要實驗技術,能以簡單且不破壞植物的方式研究植物的葉綠體及光合作用。本篇論文主要透過熱誘導葉綠素螢光 (heat-induced chlorophyll fluorescence) 來度量 WT 、 hit1-1 與 hit2 類囊膜 (thylakoid membrane) 之熱穩定性,並以光化學參數 (F''v/ F''m) 來檢驗 hit1-1 、 hit2 與WT 在常溫與熱逆境下光合作用的效率。結果則吻合先前 HIT1 和 HIT2 所參與不同耐熱機制的推論。


    hit1-1 and hit2 are two Arabidopsis heat-intolerant mutants which were found by a forward genetics approach. HIT1 is homologous to yeast Vps53p, which is a subunit of Golgi-associated retrograde protein (GARP) complex. GARP complex is required for tethering of endosome-derived transport vesicles to the late Golgi. The heat intolerance phenotype of hit1-1 is thought to be resulted from the inability to remodel plasma membrane under heat stress condition. As for HIT2, it encodes a nuclear transport receptor and the heat-intolerance phenotype was caused in part by heat-induced light-dependent oxidative stress. The chloroplast and photosynthesis are also affected under heat stress. They can be a way to research plant physiological damage under heat stress. Chlorophyll fluorescence is a phenomenon of chlorophyll molecules that is very sensitive to changes in environmental temperatures and useful for study plant physiological conditions under heat stress. In this study, heat-induced chlorophyll fluorescence and quantum yield of photosystem II were measured from WT, hit1-1 and hit2 plants under normal and high temperature conditions. Results were in agreement with that HIT1 and HIT2 participate in different heat-protecting mechanism in plants.

    中文摘要I 英文摘要II 目錄III 圖表目錄IV 一、緒論1 二、實驗材料及方法8 螢光溫度曲線偵測8 高溫逆境下光合作用效率測定10 活性氧化物質偵測12 三、 實驗結果14 Col-0、hit1-1 及 hit2 葉綠體類囊膜熱穩定性比較14 高溫逆境下 Col-0 、 hit1-1 及 hit2 光合作用效率比較16 Col-0、hit1-1 及 hit2 活性氧化物質偵測19 四、 討論22 熱敏感突變株 hit1-1 和 hit2 葉綠體類囊膜高溫逆境下熱穩定性探討22 熱敏感突變株 hit1-1 和 hit2 高溫逆境下光合作用能力探討23 熱敏感突變株 hit1-1 和 hit2 受活性氧化物質影響之探討24 五、參考文獻26

    Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25: 71-91
    Blanvillain R, Boavida LC, McCormick S, Ow DW (2008) Exportin1 genes are essential for development and function of the gametophytes in Arabidopsis thaliana. Genet 180: 1493-1500
    Bukhov NG, Samson G, Carpentier R (2000) Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. Steady-state rate. Photochem. Photobiol. 72: 351-357
    Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: Leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59: 81-93
    Conibear E, Cleck JN, Stevens TH (2003) Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol Biol Cell 14: 1610-1623
    Falcone DL, Ogas JP, Somerville CR (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol 4: 17
    Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116: 539-546
    Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116: 571–580
    Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92
    Govindjee (2006) Photosystem II: The light-driven water: Plastoquinone oxidoreductase, edited by Thomas J. Wydrzynski and Kimiyuki Satoh, Volume 22, Adv. Photosynth. Respir, Springer, Dordrecht, The Netherlands. Photosynth Res 87: 331-335
    Haasen D, Kohler C, Neuhaus G, Merkle T (1999) Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J 20: 695-705
    Havaux M (1992) Stress tolerance of photosystem II in vivo: antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiol 100: 424-432
    Havaux M (1996) Short-term responses of photosystem I to heat stress - Induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynth Res 47: 85-97
    Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation-energy in british plant-species. Plant Cell Environ 16: 673-679
    Kautsky H, Appel W, Amann H (1960) Chlorophyll fluorescence and carbon assimilation. Part XIII. The fluorescence and the photochemistry of plants. Biochem Z 332:277–292.
    Kim K, Portis AR (2005) Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol 46: 522-530
    Kipp E (2008) Heat stress effects on growth and development in three ecotypes of varying latitude of Arabidopsis. Appl Ecol Env Res 6: 1-14
    Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M, Nakayama Y, Yoshida M, Ohira S, Morita N, Velitchkova M, Enami I, Yamamoto Y (2007) Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochim Biophys Acta 1767: 838-846
    Kouril R, Lazar D, Ilik P, Skotnica J, Krchnak P, Naus J (2004) High-temperature induced chlorophyll fluorescence rise in plants at 40-50 degrees C: experimental and theoretical approach. Photosynth Res 81: 49-66
    Larkindale J, Huang BR (2004) Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environ Exp Bot 51: 57-67
    Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128: 682-695
    Lee CF, Pu HY, Wang LC, Sayler RJ, Yeh CH, Wu SJ (2006) Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta 224: 330-338
    Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. BBA Biomembr 1666: 142-157
    Maxwell K, Johnson GN (2000) Chlorophyll fluorescence--a practical guide. J Exp Bot 51: 659-668
    Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94: 217-224
    Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. BBA-Bioenerg 1767: 414-421
    Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. PNAS 84: 109-112
    Nash D, Miyao M, Murata N (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta 807: 127–133
    Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans .1. Oxygen evolution and chlorophyll fluorescence. Plant Physiol 112: 1245-1251
    Quick WP, Horton P(1984) Studies on the induction of chlorophyll fluorescence in barley protoplasts. I. Factors affecting the observation of oscillations in the yield of chlorophyll fluorescence and the rate of oxygen evolution. Proc R Soc B 220: 361–370.
    Su KM, Bremer DJ, Jeannotte R, Welti R, Yang C (2009) Membrane lipid composition and heat tolerance in cool-season turfgrasses, including a hybrid bluegrass. J Am Soc Hortic Sci 134: 511-520
    Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8: 179-187
    Wang LC, Tsai MC, Chang KY, Fan YS, Yeh CH, Wu SJ (2011) Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. J Exp Bot 62: 3609-3620
    Wu SJ, Wang LC, Yeh CH, Lu CA (2010) Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. New Phytol 186: 833-842
    Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98: 589-608
    Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach: Oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 57: 51-59
    Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant cell 20: 3389-3404

    QR CODE
    :::