| 研究生: |
洪暉程 Huei-Cheng Hong |
|---|---|
| 論文名稱: |
總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用 Applications of Ensemble Empirical Mode Decomposition (EEMD) and Auto-Regressive (AR) Model for Diagnosing Looseness Faults of Rotating Machinery |
| 指導教授: |
黃衍任
Yean-ren Hwang 吳天堯 Tian-yau Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 後處理總體經驗模態分解法 、重要性測試 、自回歸模型 、自相關函數 、故障診斷 、希爾伯特黃轉換 、總體經驗模態分解法 、經驗模態分解法 |
| 外文關鍵詞: | Fault Diagnosing, EMD, HHT, Auto-Regressive, ACF, AR model, Significance test, post-processing of EEMD, EEMD |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
後處理總體經驗模態分解法可將旋轉機械振動訊號分解成數個無模態混雜的內稟模態函數,運算後的基底波形對稱,符合原始內稟模態函數的要求。對訊號建立自回歸模型則可以對訊號波形的未來發展進行預測,其係數凝聚了系統特質。
本論文結合後處理總體經驗模態分解法與自回歸模型為旋轉機械作出故障診斷。以自相關係數為輔助,針對後處理總體經驗模態分解法得到的內稟模態函數作出分析,挑選有意義的內稟模態函數時域波形建立自回歸模型,取其係數作為鬆動故障診斷之依據,並得到良好的診斷效果。
Post processing of Ensemble Empirical Mode Decomposition (EEMD) can be utilized to decompose the vibration signals of rotating machinery into finite number of Intrinsic Mode Functions (IMFs) without mode mixing problem. The basis of the post processing of EEMD will satisfy the well-defined conditions of IMF. The Autoregressive (AR) model of information-contained IMFs can be used to predict the unmeasured vibration signal, and the coefficients of AR model represent the feature of systematic dynamic behavior.
In this paper, the post-processing of EEMD combining the AR model is proposed for diagnosing the looseness faults at different conponents of rotating machinery. The information-contained IMFs are selected to build the AR model. The looseness types are identified by analyzing the coefficients of AR model. The effectiveness of the proposed method is validated through the analysis of the experimental data.
Chen, H, G., Yan, Y. J. and Jiang, J. S., (2007), “Vibration-based damage detection in composite wingbox structures by HHT,” Mechanical Systems and Signal Processing, Vol. 21, pp. 307–321.
Cheng, J., Yu, D. and Yang, Y., (2006), “A fault diagnosis approach for roller bearings based on EMD method and AR model,” Mechanical Systems and Signal Processing, Vol. 20, pp. 350–362.
Flandrin, P., Rilling, G. and Gon?calv`es, P., (2004), “Empirical mode decomposition as a filterbank,” IEEE Signal Processing Letters, Vol. 11, pp. 112–114.
Huang, N. E., (2008), Class note of “Introduction to HHT”, Research Center for Adaptive Data Analysis, National Central University, Web site: http://rcada.ncu.edu.tw/
Huang, N. E., Shen, Z., Long, S. R., Wu, M., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., (1998), “The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society A, Vol. 454, pp. 903–995.
Huang, N. E., Shen, Z., Long, S. R., (1999), “A new view of nonlinear water waves: the Hilbert spectrum,” Annual Review of Fluid Mechanics, Vol. 31, pp. 417–457.
Huang, N. E., Wu, Z., Long, S. R., Arnold, K., C, Chen, X. and Blank, K., (2009), “On instantaneous frequency,” Advances in Adaptive Data Analysis, Vol. 1, No. 2, pp. 177–229.
Wu, T. Y., Chung, Y. L. and Huang, K. H., (2008), “EEMD Based technique for Identifying Looseness of Rotating Machinery through Analyzing Marginal Hilbert Spectrum,” The 32nd National Conference on Theoretical and Applied Mechanics, H018.
Wu, Z. and Huang, N. E., (2004), “A study of the characteristics of white noise using the Empirical Mode Decomposition method,” Proceedings of the Royal Society A, Vol. 460, pp. 1597–1611.
Wu, Z. and Huang, N. E., (2005), “Ensemble empirical mode decomposition: A noise-assisted data analysis method,” Center for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No.173.
Wu, Z. and Huang, N. E., (2009), “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1–41.
Yang, Y., Yu, D. and Cheng, J., (2007), “A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM,” Measurement, Vol. 40, pp. 943–950.
Yu, D., Cheng, J. and Yang, Y., (2005), “Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings,” Mechanical Systems and Signal Processing, Vol. 19, pp. 259–270.
于德介、程軍聖、楊宇編(2006),機械故障診斷的Hilbert-Huang變換方法,科學出版社。
吳柏林(1995),時間序列分析導論,華泰書局。
張善文、雷英傑、馮有前(2007),MATLAB在時間序列分析中的應用, 西安電子科技大學出版社。
虞和濟(1989),故障診斷之基本原理,冶金工業出版社。