| 研究生: |
林祐賢 Yu-Hsien Lin |
|---|---|
| 論文名稱: |
氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究 Research of gold catalysts loading on Al2O3-MOx (M=Cu, Mg, Zn) binary support applied to partial oxidation of methanol (POM) to produce hydrogen |
| 指導教授: |
張奉文
Feg-Wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 氧化銅 、複合擔體 、甲醇 、活性 、氧化鋁 、氫氣 、燃料電池 、觸媒 、部分氧化 、煅燒 、電子顯微鏡 、奈米 、反應 、金 |
| 外文關鍵詞: | hydrogen, XRD, TEM, BET, SEM, XPS, WGS, OSRM, SRM, conversion, reaction, catalysis, POM, binary support, fuel cell, Al2O3, CuO, methanol, calcination, ICP, TGA, gold catalyst |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以三氧化二鋁為主要擔體,採含浸法製備成複合擔體,複合物包括了:CuOx、ZnOx及MnOx,目的在進行表面改質,接著利用沈澱固著法製備成複合擔體奈米金觸媒,並進行甲醇部分氧化反應(POM reaction,CH3OH + 1/2O2 → 2H2 + CO2) 產製氫氣的程序,檢測儀器包括:感應耦合電漿質譜分析儀(ICP-AES)、熱重分析儀(TGA)、X射線繞射儀(XRD)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、X射線光電子分析儀(XPS)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,藉以評估觸媒應用於質子交換膜燃料電池的可行性。由BET測試結果,發現不同擔體比表面積差異不大。ICP-AES結果顯示,不同擔體由於表面性質不同影響了金的擔載,以Au/Al2O3-MnOx觸媒的金附著率最高。TEM的分析結果發現,金顆粒的大小會因為擔體的不同而有所差異,複合擔體能提高金晶粒的分散度,金晶粒尺寸也較單一擔體觸媒小,Au/Al2O3-CuOx觸媒經473 K煅燒後Au粒徑約為4.97 nm,但經高溫673 K煅燒之後,呈現燒結現象粒徑達11.6 nm。由XPS的結果中發現,未煅燒過的觸媒中,金以氫氧狀態存在,而在573 K煅燒過的觸媒,則只有金屬態的金(Au0)存在。活性測試後發現,觸媒的活性與擔體複合物的選擇有關,其中以Au/Al2O3-CuOx觸媒活性最佳。觸媒未經煅燒時活性最佳,推測氧化態金能促進反應活性。隨著反應溫度的增加,甲醇轉化率與氫氣選擇率都會同時增加。金觸媒擔載在複合擔體上能有效降低燒結的現象,並且提供更多的活性點。未來可以研製不同複合擔體金觸媒朝向活性更佳並且能有更低的CO選擇率作研究,期望能產製高純度氫氣以提供甲醇燃料電池的氫氣來源。
The effect of binary support of gold catalysts is widely studied. We prepare the binary support via impregnation method(Al2O3-MOx, M=Cu, Zn and Mn). The gold catalysts is then prepared by deposition -precipitation method (Au/Al2O3-MOx). The catalysts were characterized by ICP-AES, TGA, XRD, TEM, and XPS analyses. BET results shows that the surface area does not differ much from the choose of the binary support. ICP-AES results shows the surface property effect of the ability of absorption, Au/Al2O3-MnOx has the greatest gold loading amount. TEM images show that the size of gold decreases because of the binary support, about half compare to the single support catalysts, 4.97 nm after 473 K calcination, but still sintering to 11.6 nm after 673 K calcination. From XPS data, gold exists in metallic state. Selective production of hydrogen by partial oxidation of methanol (CH3OH + 1/2O2 → 2H2 + CO2) over Au/Al2O3-MnOx catalysts, the activity depends strongly on the supports, but also on the state of gold. The activity is better than single support catalysts apparently. It shows the good activity while it goes without calcination, we believe that it is because of the state of gold. Increasing the reaction temperature, the methanol conversion and hydrogen selectivity increase either. Binary supports could lower the condition of sintering and provide more active site.
Agrell, J., Germani, G., Jaras, S.G., Boutonnet, M., “Preduction of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 242, 233 (2003).
Alejo, L., Lago, R., Pena, M.A., Fierro, J.L.G., “Partial oxidation of methanol to produce hydrogen over Cu-Zn based catalysts”, Applied Catalysis A: General , 162, 281 (1997).
Andreeva, D., Tabakova, T., Ilieva, L., Naydenov, A., Mehanjiev, D., Abrashev, “Nanosize gold catalysts promotrd by vanadium oxide supported on titania and zirconia for complete benzene oxidation”, Applied Catalysis A: General, 209, 291 (2001).
Arrii, S., Morfin, F., Renouprez, J., Rousset, J.L., “Oxidation of CO on gold supported catalysts prepared by laser vaporization: Direct evidence of support contribution”, Journal of the American Chemical Society, 126, 1199 (2004).
Bethke, G.K., Kung, H.H., “Selective CO oxidation in a hydrogen-rich
” Applied Catalysis A: General 194, 43 (2000).
Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Lchikawa, S., Haruta, M., “Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcinations temperature on the CO oxidation”, Journal of Catalysis, 202, 256 (2001).
Bond, G.C., Gold Bull, 5, 11 (1972).
Centeno, M.A., Paulis, M., Montes, M., Odriozola, J.A. “Catalytic combustion of volatile organic compoundson Au/CeO2 and Au/Al2O3 and Au/Al2O3 catalysts” Applied Catalysis A: General, 234, 65, (2002)
Chang, C.K., Yeh, C.T., Chen, Y.J., “Characterizations of alumina- supported gold with temperature-programmed reduction”, Applied Catalysts A: General, 174, 13 (1998).
Choudhary, T.V., Chusuei, C.C., Datye, A.K., Fackler, J.P., Goodman, D.W., “CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex”, Journal of Catalysis, 207, 247 (2002).
Costello, C.K., Kung, M.C., Oh, H.-S., Wang, Y, Kung, H.H., “Nature of the active site for CO oxidation on highly active Au/Al2O3”, Applied Catalysis A: General, 232, 159 (2002).
Cubeiro, M.L. and Fierro, J.L.G. “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Applied Catalysis A: General, 168, 307 (1998).
Date, D., Lchihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catalysis Today, 72, 89 (2002).
Dietz, W.A., “Response factors for gas chromatographic analyses”, Journal of GC February, 68 (1967).
Garcia-Serrano, J., Galindo, A.G., Pal, U., “Au-Al2O3 nanocopmposites: XPS and FTIR spectroscopic studies”, Solar Energy Materials & Solar Cells, 82, 291, (2004).
Gardner, S.D., Hoflund, G.B., Upchurch, B.T., Schryer, D.R., Kielen, E.J., Schryer, J., “Comparison of the performance-characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation”, Journal of Catalysis, 129, 114 (1991).
Gluhoi, A.C., Bogdanchikova, N., Nieuwenhuys, B.E. “The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria” Journal of Catalysis, 229, 154 (2005).
Goodman, D.W., Valden, M., “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties”, Science, 281, 1647 (1998).
Grisel, R.J.H., Kooyman, P.J., Nieuwenhuys, B.E., “Influence of the preparation of Au/Al2O3 on CH4 oxidation activity”, Journal of Catalysis, 191, 430 (2000).
Grisel, R.J.H., Nieuwenhuys, B.E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts” Catalysis Today, 64, 69 (2001)
Grisel, R.J.H., Weststrate, C.J., Goossens, A., Crajé, M.W.J., van der Kraan, A.M., Nieuwenhuys, B.E., “Oxidation of CO over Au/MOx/Al2O3 multi-componentcatalysts in a hydrogen-rich environment”, Catalysis Today, 72,123, (2002)
Haruta, M., “Nanoparticulate Gold Catalysts for low-Temperature CO Oxidation”, Journal of New Materials for Electrochemical Systems, 7, 163, (2004).
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catalysis Today, 36, 153 (1997).
Haruta, M., Daté , M., ” Advances in the catalysis of Au nanoparticles”, Applied Catalysis A: General, 222, 427 (2001).
Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Catalysis Letters, 405 (1987).
Haruta, M., Tsubota, S., Kobayashi, T., Kagetama, H., Genet, M.J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, Journal of Catalysis, 144, 175 (1993).
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M.J.; Delmon, B. “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4” Journal of Catalysis, 144, 175 (1993)
Hcyashi, T. and Haruta, M. “Effect of an loading on selectivity in the reaction of propylene on Au/TiO2 catalyst”, Shokubai, 37, 75 (1995).
Haruta, M., Ueda, A., Tsubota, S., Torres Sanchez, R.M., “Low temperature catalytic combustion of methanol and its decomposed of methanol and its decomposed derivatives over supported gold catalysts”, Catalysis Today, 29, 443 (1996).
Huang, T. J. and Chren, S. L. “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”, Applied Catalysis A: General, 40, 43 (1988).
Hutchings, G.J., Gold Bull, 29, 123 (1996).
Idakiev, V., Tabakova, T., Yuan, Z.Y., Su, B.L., “Gold catalysts supported on mesoporous titania for low-temperature water-gas shift reaction”, Applied Catalysis A: General, 270, 135 (2004).
Konlov, A.I., Kozlove, A.P., Liu, H., Iwasawa, Y., “A new apporoach to active supported Au catalysts”, Applied Catalysis A: General, 182, 9 (1999).
Kozlova, A.P., Sugiyama, S., Kozlov, A.I., Asakura K., Iwasawa, Y., “Iron-Oxide Supported Gold Catalysts Derived from Gold-Phosphine Complex Au(PPh3)(NO3): State and Structure of the Support” Journal of Catalysis, 176, 426 (1998).
Kumar, R., Ahmed, S., Krumplet, M., Myles, K.,M., Agron National Laboratory Report, ANL-92/31, Argone, IL, USA, (1992).
Lin, S.D., Gluhoi, A.C., Nieuwenhuys, B.E., “Ammonia oxidation over Au/MOx/γ-Al2O3—activity, selectivity and FTIR measurements”, Catalysis Today, 90, 3, (2004)
Li, W.C., Comotti, M,, Schüth, F., “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidationby deposition– precipitation or impregnation”, Journal of Catalysis, 237, 190 (2006)
Luengnaruemitchau, A., Osuwan, S., Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catalysis Communications, 4, 215 (2003).
Mavrikakis, M., Stoltze, P., Norskov, J.K., “Making gold less noble”, Catalysis Letters, 64, Iss 2-4, 101 (2000).
Merck & Co., The Merck Index, (1996).
Minico, S., Scire, S., Crisafulli, C., Maggiore, R. and Galvagmo, S. “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts”, Applied Catalysis B: Environmental, 28, 245 (2000).
Navarro, R.M., Pena, M.A., Fierro, J.L.G, “Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: Influence of the initial state of the catalyst on the start-up behaviour of the reformer”, Journal of Catalysis, 212, 112 (2002).
Oh, H.S., Yang, J.H., Costello, C.K., Wang, Y.M., Bare, S.R., Kung, H.H., Kung, M.C., “Selective Catalytic Oxidation of CO: Effect of Chloride on Supported Au Catalysts”, Journal of Catalysis, 210, 375 (2002)
Okumura, M.T., Haruta, M., “Hydrogenation of 1,3-butadiene and of crotonaldehyde over higher dispersed Au catalysts”, Catalysts Today, 74, 265 (2002).
Piao, H., McIntyre, N.S., Beamson, G., Abel, M.L., Watts, J.F., “Electronic structure of Au-Al thin-film alloys by high-energy XPS and XANES” Journal of Electron Spectroscopy and Related Phenomena, 125, 35 (2002).
Prati L., Rossi, M., “Gold on Carbon as a New Catalyst for Selectivity Liquid Phase Oxidation of Diols”, Journal of Catalysis, 176, 552 (1998)
Schubert, M.M., Hackenberg, S., van Veen, A.C., Muhler, M., Plzak, V., Behm, R.J., “CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the OxygenSupply during Reaction” Journal of Catalysis, 197, 113 (2001)
Velu, S., Suzuki K., Osaki, T., “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides” Catalysis Letters, 62,159 (1999)
Wang, D., Hao, Z., Cheng, D., Shi , X., Hu, C.,“Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts” Journal of Molecular Catalysis A: Chemical, 200,229 (2003).
Wang, Z., Xi, J., Wang, W., Lu, G., “Selective production of hydrogen by partial oxidation of methanol over Cu-/Cr catalysts”, Journal of Molecular Catalysis A: Chemical, 191, 123 (2003).
Wang, Z., Wang, W., Lu, G., “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy, 28, 151 (2003).
Wasmus, S., Küver, A., “Methanol oxidation and direct methanol fuel cells: aselective review”, Journal of Electroanalytical Chemistry, 461, 14,(1999)
Wolf ,A., Schüth. F., ” A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Applied Catalysis A: General , 226, 1 (2002).
Wolf, A., Schüth, F., “A systematic study of the synthesis conditions forthe preparation of highly active gold catalysts” Applied Catalysis A: General, 226,1 (2002).
Yeh, C.T., Chen, Y.J., “Deposition of higher dispersed gold on alumina support”, Journal of Catalysis, 200, 59 (2001).
Zanella, R., Giorgio, S., Shin, C.H., Henry, C.R., Louis, C., “Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea”, Journal of Catalysis, 222, 357 (2004).