跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳順東
Shun-Tung Chen
論文名稱: 虹膜辨識系統之研究與實作
An IRIS recognition System and Its Implementation
指導教授: 蘇木春
Mu-Chun Su
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 55
中文關鍵詞: 虹膜辨識生物辨識
外文關鍵詞: Iris recognition, Iris
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物辨識近年來已被廣泛的應用於各種個人身份與辨識的用途上;且愈形重要。以目前盛行的PIN(Personal Identification Number)辨識來說,光是銀行業每年在自動提款機因為錯誤接受(false acceptance)的損失就高達300億元[21]。自美國紐約在2001年發生911事件後,個人身份辨識的正確性變得更為重要,而生物辨識所具備的唯一性相形受到了更大的重視。而虹膜辨識正是生物辨識的一種。
    目前虹膜辨識相關的研究已經行之多年,但大部所採用的方法都極為複雜;相對而言其所耗費的系統資源也高。既然虹膜的特徵僅是由各種圖案複雜程度不同的區塊所組成,本論文使用中國科學院自動化研究所提供的CASIA人眼虹膜影像資料庫[20],試圖應用影像處理的技巧,使用虹膜特徵最明顯的且最不易受到干擾的4個區域,組合成一個特徵區塊;在特徵強化的情況下,僅使用區塊切割後的平均值(Mean)與變異數(Variance)即可達到圖片配對成功率81.25%,且人員辨識成功率達96.3%。在比照使用相同資料庫之論文[23],排除不適用之圖片後,在圖片利用率87.04%的狀況下,得到的等錯誤率為3.03%。
    最後我們將此辨識方式應用於實作,使用CCD進行實際上人眼的拍攝。相較於使用事先擷取並放大的照片做為實體測試[29],我們採用了CCD直接對人眼擷取的方式。在樣本數為10的情況下,可100%正確辨識。


    Today, biometrics has been applied to personal recognition popularly, & more important. For instance, the PIN (Personal Identification Number), which was used to ATM (Automated teller machine), caused the loss of bank almost 30 thousands of millions due to false acceptance [21]. In 1991, Sep 11, terrorists attacked New York & caused inestimable loss of lives & cost; for avoid this matter, United States do their best to have the most correct identification in every where & the unique of biometric is just what we want.
    Iris recognition, one kind of biometrics, has been adopted so many years, but the methods of recognition almost are very complex & consume much resource. Since the characteristics of IRIS are made up by different patterns, in this thesis, we try to apply some methods of image processing to the data base, which is provided by CASIA [20], & hope to do well recognition. We only catch 4 blocks of IRIS in the image, which are pure & distinct, make up them to be a new block called as characteristic block. After emphasized the image of characteristic block, the matching rate of pictures could be 81.25%, & 96.3% in person matching if we count the mean & variance of characteristic blocks. Compare to the thesis which use the same CASIA database [23], follow authors suggestion, we eliminate some images that are not suitable for recognition. After that, the useable rate of images is 87.04%, & we got the 3.03% of EER.
    Finally, we try to implement this system & catch images via CCD directly replace pre-caught images [29], the matching rate is 100% when we test total 10 persons.

    摘要………………………………………………………………I 英文摘要(Abstract)…………………………………………III 誌謝………………………………………………………………V 目錄………………………………………………………………VI 圖目錄……………………………………………………………IX 表目錄……………………………………………………………XII 第一章 緒論…………………………………………1 1.1 研究動機……………………………………1 1.2 論文架構……………………………………3 第二章 虹膜辨識系統介紹…………………………4 2.1 虹膜碼(IRIS Code)………………………4 2.1.1 瞳孔定位與擷取虹膜區域…………………5 2.1.2 特徵碼轉換…………………………………6 2.1.3 虹膜碼(IRIS Code)………………………9 2.1.4 特徵碼轉換………………………………9 2.2 領圈式(Collarette)邊界局部區域……11 2.2.1 瞳孔定位與擷取虹膜區域………………11 2.2.2 特徵碼轉換與比對………………………13 2.3 以凌波轉換為基礎的虹膜辨識系統[23]…14 2.3.1 瞳孔定位與擷取虹膜區域…………………14 2.3.2 特徵碼轉換…………………………………15 2.3.2 特徵碼比對與測試結果……………………16 2.4 其他…………………………………………17 第三章 虹膜辨識系統………………………………18 3.1 流程圖………………………………………18 3.2 尋找瞳孔中心………………………………19 3.2.1 臨界值法(Thresholding)…………………19 3.2.2 斷開(Opening)……………………………21 3.2.3 邊緣偵測……………………………………23 3.2.4 定位中心……………………………………25 3.3 特徵擷取……………………………………26 3.3.1 擷取特定區域………………………………26 3.4 特徵處理……………………………………29 3.4.1 長條圖等化(Histogram equalization)…29 3.4.2 特徵轉換……………………………………30 3.4.3 正規化………………………………………31 3.4.4 邊緣增強……………………………………34 3.5 比對…………………………………………35 第四章 實作虹膜辨識系統…………………………37 4.1 實驗設備……………………………………37 4.2 擷取影像程式………………………………40 4.3 辨識程式.…………………………………41 4.4 流程變更.…………………………………42 4.4.1 長條圖等化…………………………………43 4.4.2 臨界值法……………………………………43 4.4.3 斷開…………………………………………44 4.4.4 利用投影法定位出瞳孔中心………………44 4.4.5 特徵擷取區域修正…………………………46 第五章 結論與建議…………………………………47 5.1 測試結果……………………………………47 5.1.1 錯誤接受率,錯誤拒絕率與等錯誤率……47 5.1.2 測試樣本與結果……………………………49 5.1.3 實測結果……………………………………51 5.2 後續研究方向………………………………52 參考文獻(Reference)…………………………………53

    [1] A. C. Bovik, M. Clark, & W. S. Geisler, “Multichannel texture analysis using localize spatial filters,” IEEE Trans. Pattern Anal. Machine intell., vol. 12 pp.55~73, 1990.
    [2] T. Caelli, “On discriminating visual textures & images,” Perception & Psychophysics, vol.31, pp. 149~159, 1982.
    [3] John G. Daugman, “High confidence visual recognition of persons by a test of statical independence,” IEEE Trans.Patt.Anal. and Machine Intell.,vol.15,no.11,pp.1148~1161,1933.
    [4] John G. Daugman, “Two dimensional spectral analysis of cortical receptive field profiles,” Vision Res. vol. 20, pp.847~856, 1980.
    [5] John G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Amer. A, vol. 2, pp. 1160~1169,1985.
    [6] John G. Daugman, “High confidence recognition of persons by iris patterns,” IEEE 35th International Carnahan conference on Security Technology,254~263,2001.
    [7] R. S. Feris, T. E. Campos, and R. M. Cesar, “Detection and tracking of facial features in video sequences,” in Mexican International Conference on Artificial Intelligence, pp. 129-137, 2000.
    [8] L. Flom and A. Safir, “Iris recognition system,” U.S.Patent, no.4641349,1987.
    [9] R. C. Gonazlez and R. E. woods, Digital image processing, 2nd. Addison-wesley, 1992.
    [10] R. L. Hsu, M. A. Mottaleb, and A. K. Jain, “Face detection in color images,” IEEE Trans. Pattern Analysis and Machine Intell., vol. 24, pp. 696-706, 2002.
    [11] A. K. Jain, “Fundamentals of digital image processing,” Englewood Cliffs, NJ: Prentice-Hall, 1989.
    [12] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using Gabor filters,” Pattern Recognit., vol. 24, pp.1167~1186, 1991.
    [13] T. K. Kim, J. K. Paik, and B. S. Kang, “ Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering,” IEEE Trans. on Consumer Electronics, vol. 44, no. 1, pp. 82-86, Feb. 1998.
    [14] Y. T. Kim, “Contrast enhancement using brightness preserving bi-his togram equalization,” IEEE Trans. Consumer Electron., vol. 43 , no. 1, pp. 1-8, Feb. 1997.
    [15] L. Ma, et al., “Personal identification base on iris texture analysis,” IEEE Trans. on Patt. Anal. & Machine intell., vol. 25, no. 12, pp. 1519~1533, 2003.
    [16] Hanho Sung, Jaekyung Lim, Ji-hyun Park, Yillbyung Lee, “Iris Recognition Using Collarette Boundary Localization,” ICPR (4) ,857~860,2004.
    [17] R. P. Wildes, “Automated, non-invasive iris recognition system and method,” United States Patent, no.5572596, 1994.
    [18] R. P. Wildes, “Iris recognition: an emerging biometric technology,” Proc. of the IEEE, vol.85, no.9, pp. 1348~1363, 1997.
    [19] Y. Zhu, T. Tan, and Y. Wang, “Biometric personal identification base on iris patterns,” Proc. Int’l Conf. Pattern Recognition, vol. 2. pp.805~808, 2000.
    [20] Institute of Automation, Chinese Academy of Sciences, CASIA Iris Image Database, http://WWW.sinobiometrics.com/
    [21] http://www.hightechcareers.com/doc198/biometrics198.html
    [22] http://www.dls.ym.edu.tw/neuroscience/bigeye_c.html
    [23] 池坤徽, ”以凌波轉換為基礎的虹膜辨識系統,” 國立暨南國際大學電機工程研究所論文, 民國九十二年。
    [24] 吳健康, 數位影像分析,儒林圖書,民國八十一年。
    [25] 莊英杰, “追瞳系統之研發於身障者之人機介面應用,”國立中央大學資訊工程研究所碩士論文, 民國九十三年。
    [26] 陳朝欽, 王聖文, 陳育誼, 生物辨識與認證, 國立清華大學資訊工程學系會刊, 民國九十二年。
    [27] 張智星, 資料分群與樣式辨認 (Date Clustering and pattern recognition), http://neural.cs.nthu.edu.tw/jang/books/dcpr
    [28] 楊元韶, “以類免疫系統為基礎之線上學習類神經模糊系統及其應用,”國立中央大學資訊工程研究所碩士論文, 民國九十三年。
    [29] 楊勁柏, ” 以Java語言實作自動虹膜辨識系統,” 國立暨南國際大學電機工程研究所論文, 民國九十二年。
    [30] 鐘國亮, 影像處理與電腦視覺,東華書局,民國九十一年。

    QR CODE
    :::